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A numerical thermal multiphase wellbore flow model is developed and applied. The formulation entails one-
dimensional spatial (axial) and temporal discretizations and includes coupled mass conservation equations
for oil, water and gas components, three-phase fluid flow, an energy conservation equation, and a pressure
drop relationship. A drift-flux model is employed to represent slip between fluid phases. The model is
implemented into a reservoir simulator to enable fully coupled reservoir-wellbore simulations. A series of
numerical results are presented, including validation against previous experimental results, verification
against an analytical model, and simulations of complex thermal multiphase flow scenarios that involve
vertical and multilateral wells coupled with oil reservoir models. Taken in total, these numerical simulation
results demonstrate the broad applicability and robustness of the new wellbore flow model.
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1. Introduction

There are vast resources of heavyoil, tar sands andoil shales,muchof
which is in the United States and Canada, that cannot be efficiently
produced using conventional oil recovery techniques (U.S. Department
of Energy, 2004, 2007). Rather, the production of these resources
requires the introduction of substantial quantities of heat into the
subsurface formation. In the case of heavy oil and tar sands, steam
injection is applied to increase formation temperatures to around
100–150 °C and thus decrease the oil viscosity, enabling flow (and
production) at reasonable pressure gradients. In the case of oil shales,
one of the proposed production schemes, currently in the pilot stage,
entails the use of downhole electrical heaters to heat the formation to
very high temperatures (about 340–370 °C) over a period of
approximately four years. At these temperatures, oil shale, which
contains up to 15% hydrocarbon by weight and is an oil precursor,
converts to what is essentially a light crude oil. Liquid hydrocarbons
are then recovered using vertical wells.

The design, management and optimization of all of the processes
noted above require accurate models for thermal multiphase flow in
wellbores. This modeling is very challenging due to the complex
interplay of a variety of physical phenomena. Practical models are
generally numerical, with some of the underlying representations
specified through empirical relationships. For applications in oil
recovery, wellbore flow models must be linked to reservoir simula-
tors. This linkage introduces additional complications.

Over the past few decades, many studies geared toward the
modeling of thermal multiphase flow in pipes and wellbores have
been presented in the literature. These include both analytical and
numerical models. The first analytical model was presented by Ramey
(1962). Under the assumption of single-phase flow, his model
provides the temperature inside the well as a function of depth and
time. Hasan and Kabir (2002); Hasan et al. (2005) (see also references
therein) further generalized these models by including two-phase
flow, kinetic energy and Joule-Thompson effects. In a recent paper
(Livescu et al., 2008b), we also proposed analytical models that are
valid for multiphase flows in advanced (e.g., multilateral) wells. Other
researchers, e.g., Izgec et al. (2007), have extended these wellbore
models to include approximate (single-phase radial flow) treatments
for influx from the reservoir.

Several fully-coupled numerical models for thermal wellbore flow
have been presented (e.g., Stone et al., 1989, 2002; Pourafshary et al.,
2009) within the context of general purpose reservoir simulation.
These formulations are more general than the models discussed
above. Specifically, the fully-coupled numerical models involve one-
dimensional (axial) representations of the wellbore and include
coupled conservation equations for multiple components (e.g., oil,
water and gas), an energy equation, and a pressure drop relationship.
Flow from the reservoir into the wellbore (in the case of a production
well) provides source terms for the wellbore flow model. Previous
formulations have been developed for both black-oil models (Stone
et al., 1989, 2002), in which the system is represented in terms of oil
and gas ‘pseudocomponents’ and water, and fully compositional
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models (Stone et al., 2002; Pourafshary et al., 2009), in which the
system contains an arbitrary number of components (e.g., methane,
ethane), pseudocomponents and water.

The models introduced by Stone et al. (1989, 2002) simulate the
hydrodynamics and thermal effects in both the wellbore and the
reservoir. This capability is achieved by discretizing the well into
segments and solving the well equations implicitly with the reservoir
equations. The first model of Stone et al. (1989) is a three-component,
three-phase black-oil model in which the flow regime is classified as
stratified, bubbly, slug or mist, based on experimental data. The
secondmodel (Stone et al., 2002), which has been implemented into a
commercial software package, treats isothermal compositional sys-
tems and isothermal and thermal black-oil systems. A drift-fluxmodel
is used to represent the flow inside the well in the isothermal models.
For thermal simulations, a homogeneous (without slip) model is used.
The recent work of Pourafshary et al. (2009) extends these models.
Specifically, these authors developed a thermal compositional formu-
lation which they implemented into a coupled reservoir/wellbore
simulator. This model accounts for slip between the gas and liquid
phases. Their approach is simpler than a full three-phase drift-flux
treatment, as they assume no slip between liquid phases.

The fully-coupled numerical model for thermal wellbore flow
presented in this paper has a number of important features that
distinguish it from previous developments. In contrast to the models
of Stone et al., we incorporate a drift-flux representation, which
enables us to capture slip between phases including complex physical
phenomena such as counter-current flow.

In contrast to the formulation of Pourafshary et al., our wellbore
model includes a thermal drift-flux representation and accumulation
terms (time derivatives) in both the mass and energy conservation
equations. These terms can be important when the flow is not steady
state. Our applications, which include multilateral wells, are more
complex than those considered previously.

As indicated above, in our formulation we employ a drift-flux
model to represent multiphase flow in the wellbore (or pipe). Models
of this type have been used for some time in thermal-hydraulic
analysis codes, especially in the nuclear industry (see for example
(Ishii and Mishima, 1984; Masella et al., 1998; Bonizzi and Issa, 2003;
Hibiki and Ishii, 2003; Issa and Kempf, 2003; Ishii and Hibiki, 2006;
Hoeld, 2007). They have also been used extensively in oil reservoir
simulation applications (see, e.g., Holmes et al., 1998; Shi et al., 2005,
2005). Drift-flux models are well-suited for coupling with the
reservoir flow equations because they are relatively simple, contin-
uous and differentiable.

Practical drift-flux models have a significant empirical component
and thus require a number of experimentally determined parameters
(another option is to apply a mechanistic model to determine these
parameters, but evenmechanistic models require empirical parameters
for closure). Oddie et al. (2003) performed an extensive experimental
study of two and three-phase flows in 15 cm diameter inclined pipes.
Gas–water, oil–water, and gas–oil–water systems were considered.
Based on these experimental data, Shi et al. (2005) developed a unified
drift-flux model for two and three-phase flows. For three-phase
systems, this model accounts for the effect of the gas phase on the
volume fractions of the two liquid phases (as a function of inclination
angle). This model is now used in several simulators andwill be applied
here to relate phase fractions and velocities to the total (mixture)
velocity. The liquid-liquid slip has been largely ignored in the literature
because of the difficulty of modeling this phenomenon and because of
the lack of experimental data. However, the slip between the two
liquid phases can be substantial, especially for low-rate inclined
wells. For example, Oddie et al. (2003) observed significant slip
between oil and water phases for a pipe inclination of 45° at a total
liquid rate of 20 m3/h in a 15 cm diameter pipe.

In a companion paper (Livescu et al., 2008b), we developed and
tested a semianalytical procedure that entails the use of analytical
solutions forwellbore temperature coupled sequentiallywithnumerical
solutions of the wellbore mass conservation and pressure drop
equations. Thewellboremass conservation andpressure drop equations
were solved together with the reservoir equations. The formulation
presented here represents the basis for this semianalytical procedure
and provides benchmark results against which the semianalytical
computations can be compared.

This paper proceeds as follows. We first present the equations
describing thermal multiphase flow in pipes and wellbores. The drift-
flux model is also briefly described. We then present our numerical
discretization and discuss the linkage of the wellbore model with the
reservoir simulator, which in this case is Stanford's General Purpose
Research Simulator (GPRS), described in (Cao, 2002; Jiang, 2007). A
series of numerical results is then presented. These include a
validation of the numerical model through comparison to the
experimental data of Hasan and Kabir (2002), verification of the
model through comparison to analytical results, numerical results for
a multilateral well with three-phase flow and inflow (production) at
many locations along the well, and a two-phase (gas–water) flow
problem with phase change (vaporization). Finally, conclusions and
recommendations for further work are presented.

2. Model formulation

In this section we present the equations governing wellbore flow
with thermal effects. The models are one-dimensional, with variables
resolved in the axial direction only. We consider a system with three
components, referred to as oil, water, and gas (by definition
components are phases at some reference pressure and temperature,
usually standard conditions) and three fluid phases, also referred to as
oil, water, and gas. We apply the black-oil formulation, which is
commonly used in reservoir flow simulation.

The governing equations include mass balance equations for each
component along with an energy balance equation and a momentum
balance equation. The unknowns are the in situ gas and water phase
volume fractions, designated αg and αw, wellbore pressure, pw,
mixture velocity (total volumetric flow rate divided by pipe area), Vm,
and wellbore temperature, Tw. The oil phase volume fraction, αo, can
be computed from the relationshipαo=1−αg−αw. The local volume
fraction of phase p (p=oil, water, gas) is defined as αp=Ap/Aw, i.e., the
ratio between the area occupied by the phase, Ap, and the total cross-
sectional pipe area, Aw. The well is discretized spatially into a number of
segments, and the unknowns listed above are determined for each
segment as functions of time and position.

2.1. Drift-flux model for phase velocities in well

We apply a drift-flux model to represent the superficial velocities
Vsp appearing in the conservation equations. Thismodel was originally
introduced by Zuber and Findlay (1965) for two-phase flows. It is
particularly well suited for use in a reservoir simulator as it is
relatively simple, continuous and differentiable.

For a gas–liquid flow in a vertical pipe, Zuber and Findlay
expressed the gas velocity (averaged across the pipe area) as a sum
of two terms, as shown in Fig. 1,

Vg = C0Vm + Vd ð1Þ

where C0 is a profile parameter (also referred to as a distribution
coefficient) and Vd is the drift velocity of gas relative to the liquid. For
this particular configuration, the gas inside the pipe moves faster than
the liquid as a result of two mechanisms, specifically the higher
concentration of gas near the center of the pipe, where velocity is
higher (this effect is captured by the term C0Vm in Eq. (1)) and the
tendency of the gas to rise in the pipe due to buoyancy (Vd). The



Fig. 1. Schematic depiction of the drift-flux model illustrating slip between phases.
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average mixture velocity is the sum of the gas and liquid superficial
velocities,

Vm = Vsg + Vsl = αgVg + ð1−αgÞVl: ð2Þ

Our implementation of the drift-flux model, particularly the
functional forms for C0 and Vd (which depend on αp, Vm and θ),
follows the work of Shi et al. (2005, 2005). These model parameters
were determined from an extensive set of large-scale pipe flow
experiments performed by Oddie et al. (2003) for one, two and three-
phase flows at various inclinations θ. The drift-flux parameters were
determined through an optimization procedure which minimized the
square differences between experimental results and model predic-
tions. The resulting models are applicable for gas–liquid, oil–water,
and gas–oil–water flows at various θ. We note that the model
parameters can be readily tuned for particular two or three-phase
flow systems if data are available.

In the particular case in which all phases have the same velocity,
Vp=Vm, the drift-flux model reduces to the homogeneous model. In
this case, C0=1 and Vd=0. The homogeneous model was also
implemented in this work, allowing direct comparison with the drift-
flux model.

The incorporation of temperature effects in the drift-flux model
described above adds an additional degree of complexity. In our
extension of thismodel to the thermal case, we include the temperature
dependence of density, which in turn affects the phase velocities in the
drift-flux model.

2.2. Pressure drop equation

Within the context of drift-fluxmodeling, twobasic approaches have
beendescribed in the literature for computing the pressure profile along
the well or pipe. More rigorous procedures, e.g., (Hibiki and Ishii, 2003;
Issa and Kempf, 2003), apply a general conservation of momentum
equation. Simpler approaches, used within the context of oil reservoir
simulation, involve the use of a so-called pressure drop equation. Here
we will briefly discuss the more general momentum balance approach
and then describe the pressure drop equation used in this work.
Correspondences between the two approaches will be noted.

Consider the case of two-phase (gas–liquid) flow. By summing the
momentum conservation equations for the individual phases and
then area averaging, a one-dimensional momentum balance equation
for the entire fluid can be obtained. Assuming the coordinate z points
along the well, this equation is given by Hibiki and Ishii (2003); Issa
and Kempf (2003) as:

∂pw

∂z = −ρm g―− ∂
∂t ðρmVmÞ−

∂
∂z ðρmV

2
mÞ−

ftpρmVm jVm j
2din

−R: ð3Þ
Here, ρm is the mixture density given by ρm=αgρg+αlρl, with ρg
and ρl the phase densities (subscript l represents liquid). The
parameter g ̅ is the z component of gravitational acceleration and din
is the internal diameter of the well. The last term in Eq. (3) is due to
the slip between the two phases and can be written (using our
notation) as

R =
∂
∂t ðαgρlVdÞ +

∂
∂z 2αgρlVmVd−αgðð1−αgÞρg + αgρlÞV2

d

h i
: ð4Þ

The frictional force per unit volume between the overall fluid and
the wall is evaluated through the friction factor ftp, which depends on
a number of parameters, including the pipe roughness. Comprehen-
sive discussions regarding ftp appear in the literature (Govier and Aziz,
1972; Ishii and Mishima, 1984; Hibiki and Ishii, 2003; Issa and Kempf,
2003; Ishii and Hibiki, 2006). In general, ftp is dependent on the flow
regime and is obtained from experimental data.

The approach based on the pressure drop equation (Govier and
Aziz, 1972; Stanislav et al., 1986; Hasan and Kabir, 2002) represents
the total pressure loss over any segment of the well as the sum of
three components:

Δpw = Δpwh + Δpwa + Δpwf ð5Þ

where Δphw is the hydrostatic pressure loss, Δpaw is the pressure loss
due to acceleration, or kinetic energy change, and Δpfw is the pressure
loss due to frictional effects. These terms are given by (e.g., Govier and
Aziz, 1972):

Δpwh = −ρm g― ð6Þ

Δpwa = − ∂
∂t ðρmVmÞ−

∂
∂z ðρmV

2
mÞ ð7Þ

Δpwf = −
ftpρmVm jVm j

2din
: ð8Þ

In typical reservoir simulation problems, the pressure loss due to
acceleration is small compared with the gravitational and frictional
pressure losses.

Comparing Eq. (5) with the momentum balance Eq. (3), it is
apparent that the difference between the two representations is that
the pressure drop equation does not include the R term. This term is
of a similar form as the accelerational pressure loss Eq. (7). It is
therefore reasonable to expect that theR termwill be small relative to
Δphw and Δpfw in many practical cases. It is possible, however, that this
term is important for some flow regimes, as it involves both Vm and
Vd. Therefore, we believe that further analysis is warranted and, if
necessary, treatments for computing R within the context of coupled
wellbore flow modeling should be developed. We note finally that
additional terms appear in the case of three-phase flow (Bonizzi and
Issa, (2003)), and these too should be evaluated and modeled as
required.

There is an additional complication that arises in wellbore flow
modeling that does not appear in other application areas, namely the
impact of inflow through the perforations on ftp. Ouyang and Aziz
(2002) investigated this effect and showed that ftp should be modified
based on the inflow or outflow Reynolds number. This effect should
therefore also be included in both the momentum balance and
pressure drop models.
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2.3. Mass conservation equations

The mass conservation equations for the gas, oil and water
components are, respectively,

∂
∂t ðρgαgχgg + ρoαoχgo + ρwαwχgwÞ

+
∂
∂z ðρgVsgχgg + ρoVsoχgo + ρwVswχgwÞ = mgg + mgo + mgw

ð9Þ

∂
∂t ðρoαoχoo + ρgαgχogÞ +

∂
∂z ðρoVsoχoo + ρgVsgχogÞ = moo + mog

ð10Þ

∂
∂t ðρwαwχwwÞ +

∂
∂z ðρwVswχwwÞ = mww: ð11Þ

Here, ρp and αp represent the density and the in situ volume fraction
of phase p (p=water, oil, gas), respectively, χcp is the molar fraction of
component c (c=water, oil, gas) in phase p, Vsp is the superficial
velocity of phase p and mcp is the source/sink term at each segment
along the well (we use p to designate both pressure and phase, though
the meaning should be clear from the context). Note that, as indicated
above, the gas component can reside in all three phases, the oil
component in the oil and gas phases, and the water component only in
the water phase. Thus, the general model can handle volatile oils, as the
oil component can exist in the gas phase. Eqs. (9)–(11) can be readily
generalized to the case when all components exist in all phases.

The time derivative terms in the mass balance equations represent
the mass accumulation of the components, while the spatial
derivative terms represent the convective flux of the components.

Again, the superficial velocity of phase p is defined as the product
of the phase velocity and the local phase fraction, Vsp=αpVp. The
mixture velocity can be expressed as Vm=Vsg+Vso+Vsw.

In writing the generalized black-oil equations above, we assume
instantaneous local thermodynamic equilibrium in the reservoir and the
wellbore. Thus, the pressure–volume–temperature (PVT) properties
can be related to phase properties. Specifically, the equilibrium ratios
(K-values, which are prescribed as input) relate the mass fraction of
component c in phase p1 to themass fraction of the same component in
phase p2 as functions of pressure and temperature. For example, Kgog

relates themole fraction of the gas component in the oil phase to that in
the gas phase:

Kog
g ðp; TÞ = χgo

χgg
: ð12Þ

All other required relationships between the PVT and phase
properties are well documented in the literature (Aziz and Wong,
1988, 1989; Farouq Ali and Abou-Kassem, 1988, 1989; Aziz and Settari,
2002). Standard black-oil properties (solubility ratios and formation
volume factors) can be related to equilibrium ratios. The relationships
given above are for isothermal models. For thermal systems, additional
correlations are needed to account for temperature effects. For
example, here the temperature variation of the density of phase p is
evaluated as

ρpðp; TÞ =
ρTpðpref ; TÞρp

pðp; Tref Þ
ρp;ref ðpref ; Tref Þ

ð13Þ

where pref and Tref are the reference pressure and temperature,
respectively. Other representations are also possible (Aziz and Wong,
1988, 1989; Farouq Ali and Abou-Kassem, 1988, 1989).

In some cases, such as in pipeline simulations, source/sink terms
can be specified directly (e.g.,moo(z, t) is prescribed). However, in the
case of oil reservoir simulation, source/sink terms involve coupling
between the well and the reservoir. In this case the source/sink term
depends on the well and reservoir pressures, in addition to other
reservoir data. Specifically, for a production well, the source term can
be written as

mcp = ρpq
w
cp = Wλpρpχcpðpp−pwÞ ð14Þ

where qcp
w is the volumetric flow of component c in phase p from the

reservoir into the well, λp is the phase mobility, which depends on
reservoir pressure and fluid saturations, and W is the well index,
which depends on the reservoir simulation grid, reservoir properties
and well diameter, and pp is the phase pressure in the grid block in
which the particular well segment is located. The well indexW can be
computed using standard procedures (Peaceman, 1977).

2.4. Energy conservation equation

The energy conservation equation for the overall fluid can be
written in a variety of forms (Ramey, 1962; Satter, 1965; Ishii and
Mishima, 1984; FarouqAli andAbou-Kassem, 1988, 1989; Sharmaet al.,
1989; Holmes et al., 1998; Hasan and Kabir, 2002; Stone et al., 2002;
Hibiki and Ishii, 2003; Cheng andMewes, 2006; Ishii and Hibiki, 2006).
We express it as follows:

∂
∂t∑p

ρpαp up +
1
2
V2
p

� �
= − ∂

∂z∑p
ρpVsp hp +

1
2
V2
p

� �

+ ∑p ρpVsp g―−Qloss + mh

ð15Þ

where up and hp are the specific internal energy and the enthalpy of
phase p, respectively. The time derivative term represents the energy
accumulation and the spatial derivative term represents the flux of
energy due to convection and work done by pressure forces. The other
two terms represent the rate of work done on the fluid by gravitational
forces and heat losses to the surroundings. We ignore conductive heat
transfer in the axial direction. The source term in Eq. (15) is similar
to those in the mass conservation equations, the molar fractions being
replaced by specific enthalpies,

mh = ∑
p
Wλpρphpðpp−pwÞ ð16Þ

The specific internal energy and enthalpy of phase p are

up = ðcpÞpðTw−Tref Þ ð17Þ

hp = up +
pw

ρp
ð18Þ

where (cp)p represents the specific heat of phase p, which is defined at
the reference temperature Tref. Phase change terms do not appear in
Eq. (15) because we write the energy equation for the entire fluid
system rather than for each phase individually, and thus the phase
change terms cancel. We note also that the Joule-Thompson effect is
included in the formulation through our general treatment of hp. For
example, through the representation of ρp(pw, Tw) in Eq. (18), the
Joule-Thompson coefficient μJT for the gas phase is given by

ðμ JT Þg = − 1
ðcpÞg

1
ρg

−T
∂
∂T

1
ρg

 !" #
p

8<
:

9=
; ð19Þ

This quantity is nonzero.
In Eq. (15), the heat loss term Qloss must be approximated, and

many models have been proposed. Here we assume that the heat loss
to the surroundings can be represented in terms of an overall heat
transfer coefficient, Uto, which can be written as a sum of thermal



Fig. 2. Schematic representation of the discretized wellbore and the locations at which
the different variables are defined.
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resistances. In our case these resistances are those of the tubing,
annulus fluid, casing and cement. The heat loss to the surroundings is
then given by

Qloss = −2πrinUtoðT−TwÞ ð20Þ

where rin=din/2 is the internal radius of the well and T is the
temperature external to the wellbore, which in our case is the
reservoir temperature. For a detailed discussion of the determination
of the overall heat transfer coefficient, see Prats (1982). In this work,
the overall heat transfer coefficient does not vary in time, although
time-dependent overall heat transfer coefficients could be easily
treated. Models with time-dependent overall heat transfer coeffi-
cients have been presented previously by Ramey (1962), Hasan and
Kabir (2002), Izgec et al. (2007).

We note finally that, in the case of water-steam phase change, an
extra constraint is needed in addition to the energy equation. When
only one phase exists (gas or water), the temperature and pressure
are independent, while in the two-phase region, the temperature is
dependent on the saturation pressure,

pw = pwsatðTwÞ: ð21Þ

Both the saturation pressure and the temperature in the two-
phase region are interpolated from steam tables (Keenan et al., 1969).
This constraint was also used in previous well models (see for
example (Stone et al., 1989)).

Prior to describing the numerical implementation, we review
some of the inherent assumptions and limitations of our thermal
multiphase wellbore flow model. These are as follows:

• In the current model, the fluids are always represented as black-oils
with constant bubble point. Extension to compositional systems
requires an expanded set of equations and a full treatment of phase
behavior. In recent work (Livescu et al., 2009), we developed a
prototype formulation for compositional systems.

• The current model allows exchange between the oil and gas phases.
When oil and gas components are present, the water component
can reside only in the water phase. The maximum number of
components that the model can treat is three.

• In the case of a water-steam system in which no hydrocarbon
components are present, the water component can reside in both
the gas and liquid phases. We show an example of such a case in the
results below.

• The wellbore model is transient and one-dimensional, with
variables resolved in the axial direction. A drift-flux representation
is used to model slip between phases within the wellbore. This
model requires a number of empirical coefficients.

3. Numerical implementation

The well equations presented above are solved fully-coupled
(implicitly) with the reservoir flow equations. As explained earlier,
the reservoir model provides the source terms (and/or boundary
conditions) for thewellboremodel. For a three-phase, three-component
system, the reservoir model consists of three mass conservation
equations and an energy conservation equation, along with capillary
pressure relationships and a saturation constraint. The variables
associated with the reservoir are the phase pressures, gas and oil
saturations (in situ phase fractions), and temperature. These equations
are discretized using a finite volume procedure. Detailed descriptions of
the simulation procedure are given by Aziz andWong (1988, 1989) and
Farouq Ali and Abou-Kassem (1988, 1989).

The well is discretized into Ns segments. All variables are taken to
be constant within a segment. As indicated in Fig. 2, for segment i, the
mixture velocity is defined at the upper (exit) boundary of the cell, the
pressure and temperature are defined at the lower boundary, and the
gas and water phase volume fractions at the center of the cell. These
quantities are defined at different locations within the segment to
more easily incorporate boundary conditions and to facilitate linkage
with the reservoir simulator. The system of equations, corresponding
to the mass and energy conservation equations for the well and
reservoir, is linearized using Newton's method. The linear system is
written as Jδ=−R, where J is the Jacobian matrix, δ is the update
vector and R is the residual vector.

The discretized forms of the well equations, which provide the
residual equations for the well, are given by:

Rw
p;i = ðpwi −pwi−1Þ−Δpwh;i−Δpwf ;i−Δpwa;i = 0 ð22Þ

Rw
c;i =

Δz
Δt

Ai ∑
p

ρpαpχcp

� �n+1

i

− ∑
p

ρpαpχcp

� �n

i

" #

−Ai ∑p ρpVspχcp

� �n+1

i+1
− ∑p ρpVspχcp

� �n+1

i

� �

− W ∑p λpρpχcpðpp−pwÞ
h in+1

i
= 0ðc = g; o;w; p = g; o;wÞ

ð23Þ

Rw
e;i =

Δz
Δt

Aif ∑
p

ρpαp up +
1
2
V2
p

� �� �n+1

i

− ∑
p

ρpαp up +
1
2
V2
p

� �� �n
i
g

− Aif ∑p ρpVsp hp +
1
2
V2
p

� �� �n+1

i+1
− ∑p ρpVsp hp +

1
2
V2
p

� �� �n+1

i
g

− Vi ∑p ρpVsp g―
� �n+1

i
+ ΔzðQlossÞn+1

i −ðmhÞn+1
i = 0

ð24Þ

where i and i+1designate segments, n and n+1 designate time levels,
Ai and Vi are the cross-sectional area and the volume of segment i, Δz
and Δt are the segment lengths and time steps, respectively, and g ̅=g
cos θ. Note that, in Eq.(23), χwo=χwg=χow=0. The pressure drop
equation is used for all segments except the first one. For this segment a
constraint equation is applied, which can specify either the rate of any
phase (other specifications such as total rate are also possible) or a
bottom hole pressure (BHP). Similar (three-dimensional) discretiza-
tions provide residual equations for the reservoir domain.

Weuse the standardGodunovfirst order implicit upwinding scheme
for discretizing the mass and energy conservation Eqs. (23) and (24).
The discretizations aswritten are for a productionwell forwhich theVsp
are all negative (positive z points downwards). The upwinding of the
convection terms is switched when any of the Vsp are positive. In the
case of counter-current flow, different phases may flow in different
directions, so the upwind direction must be evaluated for each phase
individually. The scheme is implicit, as all quantities outside of the
accumulation term are evaluated at time n+1.



Fig. 4. Validation of the numerical results against experimental data reported by Hasan
and Kabir (2002). ‘GPRS’ indicates the numerical result, ‘measured’ indicates the
experimental data, and ‘reservoir’ depicts the surrounding temperature (which varies
due to the geothermal gradient). The overall heat transfer coefficient is depth-dependent.
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The Jacobian matrix J has four parts, designated JRR, JRW, JWR and
JWW. The first subscript indicates the domain (R for reservoir, W for
well) from which the residual equation derives and the second
subscript indicates if the derivative is with respect to a reservoir or
well variable. A schematic representation of J is shown in Fig. 3. The
Jacobian is built such that the energy equations and the temperature
unknowns (for both the reservoir and well domains) appear at the
end of their respective sets. For isothermal problems these equations
and unknowns are dropped and the Jacobian is otherwise the same.

4. Numerical results

We now apply our numerical model to investigate several different
cases involving thermalflow inwellbores. In all cases, Stanford'sGeneral
Purpose Research Simulator (GPRS) is used. By specifying a very simple
reservoirmodel toprovide the source terms for thewell in thevalidation
and verification examples, the coupled reservoir-wellbore simulator to
some extent emulates a standalone wellbore simulator. Additional
applications are presented in (Livescu et al., 2008a).

4.1. Validation using experimental data

The first example provides a validation of our numerical model
against experimental data (Hasan and Kabir, 2002). Consistent with the
experimental set up, we have a vertical well of length 1632 m (5355 ft)
and interior diameter din=0.0762 m (3 in) with one perforation at its
bottom (at z=L). The wellbore pressure at segment 1 (top of the well),
p1
w, is 779.1 kPa (113 psi). Thefluidflow rates at standard conditions are

qo=9.380 m3/day (59 STB/day), qw=86.17 m3/day (542 STB/day) and
qg=1161 m3/day (41 Mcf/day). These rates are achieved in the
simulations through appropriate specification of the phase saturations
in the reservoir and the parameters appearing in Eq. (14). Phase
densities at standard conditions are ρo=853.4 kg/m3, ρw=1010 kg/m3

and ρg=1.32 kg/m3.
The surrounding temperature is defined by a geothermal gradient,

increasing from 24.44 °C (76 °F) at the top of the well to 42.22 °C
(108 °F) at the bottomof thewell. Hasan andKabir (2002) used a depth-
dependent overall heat transfer coefficient in their model for this
problem.Weapply their values in our solution (i.e.,Uto is not amatching
parameter). The drift-fluxmodel is used for this calculation and thewell
is kept under BHP control. The reservoir model is specified such that an
essentially steady-state wellbore flow is achieved.

The comparison between our numerical results, labeled ‘GPRS,’
and the experimental data, labeled ‘measured,’ is shown in Fig. 4,
together with the geothermal reservoir temperature. The agreement
is clearly very close between the simulation results and the
experimental data. These results, although for a simple system,
provide a degree of validation for our thermal wellbore flow model.

4.2. Verification against analytical solution

We compared numerical results using the fully-coupled model to
analytical solutions for a number of cases, both steady-state and
Fig. 3. Schematic representation of the full Jacobian matrix.
transient, and achieved very close agreement for temperature along the
wellbore (this is the quantity provided by the analytical solutions) in all
cases. The next example, which involves steady-state three-phase flow,
is representative. The well is vertical (1524 m in length, 0.0762 m
interior diameter) and is open to the reservoir only at z=L. We specify
p1
w=779.1 kPa. The fluid flow rates at standard conditions are

qo=321.1 m3/day, qw=80.77 m3/day and qg=1903 m3/day. Steady-
state conditions with these rates are achieved through appropriate
specification of the reservoir parameters as in the first example. The
overall heat-transfer coefficient is Uto=105.2 W/(m2 °C). The drift-flux
model is employed. The analytical solution for this case is expressed in
terms of an integral which can be evaluated easily (see Livescu et al.,
2008b for the specific expression).

Results for the temperature along the wellbore for this case are
shown in Fig. 5. There is clearly very close agreement between the
numerical and analytical models. An additional comparison between
the numerical and analytical solution for a transient example is given
in (Livescu et al., 2008b), where a similar level of agreement is
achieved. This very close correspondence between the numerical and
analytical solutions is reassuring and can be viewed as a verification of
our numerical implementation of the thermal wellbore flow model.
4.3. Numerical results for complex cases

We now demonstrate the performance of the numerical model for
more general scenarios. We first consider a multilateral well with three
Fig. 5. Verification of the numerical results against an analytical solution for the three-
phase case. The drift-flux model is used. ‘GPRS’ and ‘analytical’ represent the numerical
and analytical results. Surrounding temperature varies due to geothermal gradient.



Fig. 6. Schematic representation of multilateral well: (a) orientation of the well in 3D, and (b) segment numbering.
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different branches. A schematic of this model is shown in Fig. 6. Note
that the two horizontal branches are in different planes. Each branch
is 304.8 m (1000 ft) long, of interior diameter 0.0762 m (3 in.), and is
open to the reservoir only at its end (as depicted in Fig. 6). The
vertical branch has segments numbered from 1 to 21 (segment 21 is
perforated), the upper horizontal branch contains segments 22 to 41
(segment 41 is perforated) and the lower horizontal branch contains
segments 42 to 61 (segment 61 is perforated). Segment 22 of the
upper horizontal branch is connected to segment 11 of the vertical
branch and segment 42 of the lower horizontal branch is connected
to segment 21 of the vertical branch. The well is operated under BHP
control with p1

w=30.23 MPa (4400 psia). The system contains three
phases and the drift-flux model is used in the simulations. The
reservoir has a geothermal temperature gradient and the overall
heat transfer coefficient is 131.4 W/(m2 °C). The bubble point pres-
sure is here taken as constant (i.e., not a function of temperature) at
pbp=34.58 MPa (5015 psia).

In this case the system is not at steady state. Rather, we consider
primary production in which the reservoir pressure declines with time
due to fluid withdrawal (the reservoir is sealed on all boundaries).
Because p1

w is held constant, this results in decreased liquid production
with time. Simulation results are presented in Figs. 7–9. In Fig. 7, the
pressure profile along thewell is shown for t=1and 100 days. The fluid
flow rates at standard conditions at t=1 day are qo=714.2 m3/day,
qw=1007 m3/day and qg=1.462×105 m3/day. At t=100 days the
flow rates are q o=503.1 m3/day, qw=649.8 m3/day and
qg=1.870×105 m3/day. The decrease of pressure with time is clearly
evident. The discontinuities in flow quantities are due to the well
branching and segment numbering. At 1 day, the pressure in some
segments is above the bubble point pressure (pbp is shown as the
horizontal dashed line in Fig. 7), while at 100 days the pressure is lower
Fig. 7. Pressure variation at t=1 and 100 days for the multilateral well example.
than the bubble point pressure everywhere along the well. This has an
impact on the gas volume fraction, αg, as shown in Fig. 8. Specifically, at
1 day, the gas phase is present only in segments 1–18 and 22–41. At
100 days, αg is nonzero in all segments.

Along the horizontal branchesαg does not vary much. There is more
variation along the vertical branch, where the pressure gradient is
larger. Also, there is a jump in αg at segment 11, where the upper
horizontal branch meets the vertical branch. For example, at
t=100 days, this jump can be understood in terms of the gas phase
flow rates in the two adjacent branches. More specifically, a smaller gas
phase flow rate leaves segment 12 of the vertical branch (where
αg=0.124) and mixes with the larger gas phase flow leaving segment
22 of the horizontal branch (where αg=0.262; this higher value ofαg is
due to the lower pressure in theupper horizontal branch). This results in
αg=0.172 in segment 11.

The temperature profiles at 1 day and 100 days are shown in Fig. 9.
The general appearance of the profiles is the same at both times,
though there is a shift toward lower temperatures as time proceeds.
The temperature is seen to consistently decrease in the direction of
flow along both horizontal branches. This is due to the interplay of the
Joule-Thompson effect and heat loss to the reservoir.

In our final example we consider a two-phase (gas and water)
systemwith a verticalwell 304.8 m in length and 0.0762 m in diameter.
The well contains 21 segments, has only one perforation (at z=L), and
is specified to produce liquid water at a rate of 159.0 m3/day. No
components other than water are present in this example. The initial
reservoir pressure at z=L is 15.16 MPa (2200 psi). As in the previous
example, the reservoir pressure decreases with time due to fluid
withdrawal. The bubble point occurs at a pressure of 6.89 MPa
(1000 psi) at a temperature of 285 °C. The overall heat-transfer
coefficient is Uto=105.2 W/(m2 °C).
Fig. 8. Gas volume fraction at t=1 and 100 days for the multilateral well example.



Fig. 9. Temperature variation at t=1 and 100 days for the multilateral well example. Fig. 11. Temperature variation at t=0, 3 and 10 days for the water production case.
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Simulation results for the gas (water vapor) phase volume fraction
along thewell are shown in Fig. 10. Results for the temperature profile
are presented in Fig. 11. At t=3 days, hot water enters the well at
segment 21. Due to heat losses to the reservoir and decreasing
pressure, this fluid reaches the bubble point pressure at segment 14.
From this point to the first segment the gas phase is also present. In
this two-phase region temperature is a function of pressure (pw=psat

w

(Tw)) and can be interpolated from steam tables (Keenan et al., 1969)
as described earlier. At later times (e.g., t=10 days), due to the
decrease in reservoir pressure, the fluid entering the well is already
below the bubble point, so both phases exist along the well. As time
proceeds and αg increases, the total amount of fluid (gas+liquid)
produced increases because a constant liquid rate (159.0 m3/day) is
maintained. Specifically, at a time of 3 days, qg=1.312×104 m3/day,
and at a time of 10 days, qg=1.803×104 m3/day.

We now comment briefly on the computational requirements of
the numerical thermal multiphase wellbore flow model. Here we
report the average number of Newton iterations per time step
required by the model and compare this to the requirements for the
isothermal case. For the multilateral well example presented above,
our model required an average of 7 or 8 Newton iterations per time
step (depending on the maximum time step, which we varied from
0.1 days to 10 days). If we simulate this model without including
energy effects (i.e., we solve the wellbore and reservoir flow
equations but not the energy equations), the average number of
Newton iterations per time step varies from about 4 to 6. Thus, as a
result of the additional nonlinearity introduced by thermal effects,
more Newton iterations are required for the coupled thermal
problem. Similar numbers of Newton iterations per time step were
Fig. 10. Gas (water vapor) volume fraction variation at t=0, 3 and 10 days for the
water production case.
required for other complex examples such as those presented in
(Livescu et al., 2008a).

The examples presented in this section demonstrate the wide
variety of problems that can be addressed with our thermal wellbore
flow model. The model allows for the simulation of general
multilateral wells, three flowing phases, phase change, and full
interaction between the well and the reservoir. The validation and
verification examples are very encouraging as they suggest that the
model is capturing the correct physics and that the numerical
implementation properly represents the underlying formulation.

5. Concluding remarks

In this work, a numerical thermal multiphase wellbore flow model
was developed and tested. Thismodel is coupledwith a general purpose
reservoir simulator, so the combined formulation allows us to simulate
many practical and important flow phenomena. The model entails the
spatial (axial) and temporal discretization of the well domain and
solution of discrete wellbore equations for mass conservation (for oil,
water and gas components), energy conservation, and a pressure drop
relationship. The slip between phases is represented using a drift-flux
model. Heat loss to the surroundings is captured using an overall heat
transfer coefficient. Themodel is solved fully-coupledwith the reservoir
flow equations.

We presented a series of numerical results, including validation
against experimental results from Hasan and Kabir (2002) for a
vertical well, verification against an analytical solution for three-
phase steady-state flow, simulation of thermal multiphase flow in a
multilateral well, and phase change (vaporization of water to steam)
in a vertical well. Taken in total, these results demonstrate the
accuracy and broad applicability of this model.
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