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A B S T R A C T   

Demand response (DR) programs based on pricing options allow residential customers to achieve a financial 
reduction in their energy bill due to changes in their consumption patterns, especially during peak periods. 
However, when a large number of consumers adopt this energy management program, the demand shifted to 
periods with low energy prices can generate new demand peaks. As a result, the quality of the power supply 
service may be compromised. To address this concern, this paper proposes a mixed-integer linear programming 
(MILP) model that aims to improve the load factor (LF) related to the demand profile of customers. To achieve 
this goal, an intelligent scheduling strategy for household appliances that considers flexibility in customer 
comfort, here called customer hourly preferences, is developed. Based on these preferences, the strategy seeks the 
efficient daily usage of smart appliances, mainly those with higher average power, to avoid its coincident con-
sumption in periods with lower energy rates, thus mitigating the appearance of new peaks. In the proposed 
model, the operating expenses of both customers and the electricity company (ECO) are minimized. A set of 
technical and operational constraints such as the average power, number of times utilized, and average time of 
usage of home appliances, as well as the charging rate, average time for charging, and initial state-of-charge 
(SoC) of the plug-in electric vehicle (PEV) battery, are considered. Uncertainties related to the periods of the 
day when a given appliance (including PEV) is turned-on for consumption are modeled using a Monte Carlo 
Method (MCM). The MILP model is solved using a commercial solver CPLEX that makes use of classical opti-
mization techniques to ensure the optimal solution to this problem. The performance of the MILP model was 
tested through two case studies. Case study 1 considers a group of consumers with the same income, while case 
study 2 triples the number of consumers in the previous case considering different incomes. The results show the 
importance of the proposed tool for analyzing and evaluating prospective scenarios that guarantee the efficient 
usage of electric energy with the lowest financial expense for both consumers and the ECO.   

1. Introduction 

1.1. Context 

Information and communication technologies (ICTs) are the back-
bone of Smart Grids (SGs). They allow the bi-directional flow of infor-
mation between consumers’ homes and electricity companies (ECOs). 
Through these technologies, ECOs can know the behavior patterns of 
their consumers when turning on a given set of appliances in the day. 
Thus, energy needs of residential customers can be met efficiently, 
safely, and reliably (Ekanayake, Liyanage, Wu, Yokoyama, & Jenkins, 
2012; Sioshansi, 2012). 

In the SG environment, smart domestic homes are equipped with 
control, measurement, and sensing systems to reach a certain level of 
automation. In these smart homes, smart household appliances ex-
change information with the smart meter. In turn, the meter commu-
nicates information related to the customer’s demand profile to the ECO 
operation center. Communication networks, such as home area network 
(HAN), neighborhood area network (NAN), and wide area network 
(WAN), are used to support this flow of information (Bem Dhaou, 2019; 
Obushevs, Oleinikova, & Mutule, 2016; Saleem, Crespi, Rehmani, & 
Copeland, 2019). Based on this data flow, electric power companies can 
devise efficient strategies on the demand side to manage electricity 
usage in each domestic unit, considering the operational limits of the 
power grid. To do this, a promising alternative is in the implementation 
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of demand response (DR) programs. Through these DR programs, the 
minimization of operating costs related to both customers and ECO can 
be reached (Shawkat Ali, 2013). 

Basically, DR programs are based on financial incentives, demand 
bids, or price options (Shareef, Ahmed, Mohamed, & Hassan, 2018). 
Financial incentives programs involve strategies, such as direct load 
control, load shedding, and demand reward, which aim to reduce 
customer demand at a certain time of day (Hussain & Gao, 2018; Shareef 
et al., 2018). By demand bids programs, ECOs seek the participation of 
customers in periods of heavy load or with the risk of damage to the 
power grid. During these periods, consumers can indicate their demand 
available to be reduced in exchange for financial benefits (Hussain & 

Gao, 2018). Both programs, previously mentioned, are implemented for 
critical periods of the electrical system. Unlike these programs, pricing 
options programs are suitable for residential consumers to manage their 
demand voluntarily throughout the day. And in this way to guarantee 
the financial reduction of energy consumption expenditures (Di Santo, 
Kanashiro, Di Santo, & Saidel, 2015; Shareef et al., 2018). Several 
pricing schemes are established by ECOs to change users’ consumption 
patterns. Among them, time-of-use (TOU) price, critical peak pricing 
(CPP), and real-time pricing (RTP) can be adopted by consumers 
participating in the DR program (Ponce-Jara et al., 2017). According to 
each tariff scheme, consumers can turn on their home appliances for 
consumption, including the plug-in electric vehicles (PEV) for battery 

Nomenclature 

A. Functions 
F Objective function 
Ω1 Cost function related to customers energy bill 
Ω2 Cost function related to the usage of appliances with higher 

average power 
Ω3 Cost function related to ECO’s financial gains 
| .| Cardinal of a set 

B. Sets and indexes 
u Index for customers 
a Index for smart appliances 
t Index for periods 
y Index for discrete blocks 
U Set of home customers u 
A Set of smart appliances a 
T Set of periods t 
Y Set of discrete blocks y 

C. Parameters 
ζt Hourly tariff ($/kWh) 
Bu PEV battery capacity related to customer u (kWh) 
βa Indicates the type of appliances a (− 1: PEV; 0: appliances 

with working hours less than 1 h; 1: appliances with 
working hours greater than or equal to 1 h) 

β’
a Binary parameter that adopts 1 for higher average power 

appliances; otherwise 0 
D a,t Probability distribution related to the consumption of 

household appliances a at period t 
D̂ a,t Accumulated probability distribution related to the 

consumption of household appliances a at period t 
H

cp
u,a,t Habitual consumption profile (kWh). Indicates the energy 

consumed by the customer u when turn-on appliance a at 
period t 

M Big value used in the linearization process 
Pa Average power of appliance a (kW) 
Pev Charging rate of the PEV battery (kW) 
qa Number of time that appliance a is turned-on for less than 

1 h 
qa/qa Minimum and maximum number of times that the 

appliance a is turned on throughout the day 
qch

u /qch
u Minimum and maximum number of times that the PEV 

battery related to the customer u can be charged 
SoC0

u Initial state-of-charge of the PEV battery related to user u 
(kWh) 

s Accumulator 
Δt Duration of each period t (h) 
θc

u,a,t Customer hourly preference. Indicates the periods t of 
flexibility in which an appliance a can be connected for 

consumption without affecting customer u comfort 
tav
a Average time that an appliance a is turned-on for power 

consumption (h) 
[

ta, ta
]

Time variation interval within the period t in which the 
appliance a is turned on (h) 

[

tevu , tevu

]

Time variation interval of the variable τev
u,t (h) 

X hu
u,a,t Binary value related to H cp

u,a,t . Indicates the status of a 
given appliance a (1: the customer u has turned on the 
appliance a at period t; 0: otherwise) 

ξ Represents the final state-of-charge of the PEV battery in 
percentage 

η Charging efficiency of the PEV battery 
μ’,μ’’,μ’’’ Weights related to Ω1, Ω2, and Ω3, respectively 
Πt,y Inclination value related to the discrete block y at period t 

(equal to [2y− 1]× Δt) 
Δt Upper limit related to the variable ΔΓt,y 

D. Variables 
X ou

u,a,t Binary value related to O cp
u,a,t . Indicates the status of a given 

appliance a (1: the customer u has connected the appliance 
a at period t; 0: otherwise) 

θ’
u,t Coincidence factor. Represents for each customer u the 

number of appliances that are turned-on for consumption 
at the same period t 

O
cp
u,a,t Optimal consumption profile (kWh). Indicates the energy 

to be consumed by the customer u when turn on the 
appliance a at period t 

τus
u,a,t Continuous variable that represents for each customer u 

the time that the appliance a is turned on in the period t (h) 
G

ev
u,t Continuous variable that represents for each customer u 

the energy stored in the PEV battery at period t (kWh) 
τev

u,t Continuous variable that represents to the customer u the 
charging time of the PEV battery at period t (h) 

G
s
u Continuous variable that represents for each customer u 

the total energy stored by PEV battery (kWh) 
Peu

t Continuous variable that represents the power supplied by 
the ECO in each period t (kW) 

Peu Average value related to the variable Peu
t (kW) 

Δτus
u,a,t Represents the product τus

u,a,t × X ou
u,a,t to be linearized 

Δτpev
u,a,t Represents the product τpev

u,t ×X ou
u,a,t to be linearized 

Γt Represents the difference between Peu
t and Peu at period t 

ΔΓt,y Auxiliary variable to be used in the square of Γt 

discretization process 
Γ+

t /Γ−
t Auxiliary variables to be used in the objective function 

discretization process  
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charging, at times of the day with a cheaper fare (Marah & Hibaoui, 
2018). However, the adoption of this type of DR program by a large 
number of consumers can lead to the appearance of high consumption 
peaks. Due to the low energy prices in off-peak periods, the appearance 
of peak consumption during these periods is evident once the coincident 
consumption of household appliances, especially those of higher 
average power, occurs (Shakouri & Kazemi, 2017). Consequently, 
congestion in the energy distribution system can happen, affecting the 
quality of the supply service to domestic customers (Ghorashi, Rastegar, 
Senemmar, & Seifi, 2020). 

According to the U. S. Energy Information Administration (IEA), in 
its annual report Annual Energy Outlook 2019 with projections to 2050, the 
annual use of electricity in each residential home will decrease by 22 % 
from 2018 to 2050 as a result of using more efficient appliances and the 
alternative sources (US Energy Information Administration, 2019). To 
guarantee this projection, changes in the customers’ habitual con-
sumption behavior must happen considering its impact on both con-
sumption profile and the performance of the electricity network. In this 
scenario, the DR programs to be implemented must go beyond merely 
reducing peak demand. This reduction should consider the hourly 
preferences of customers as a basis for determining the effective strategy 
for managing consumption, thus avoiding excess energy consumption 
during off-peak periods that compromise the quality of supply. In this 
work, the hourly preferences relate to how many periods consumers are 
willing to anticipate or postponed the usage of a given appliance (i.e., 
flexibility in the hours of appliances usage) to obtain a financial benefit 
on the energy bill without harming their comfort level (Anvar-
i-Moghaddam, Monsef, & Rahimi-Kian, 2016; Chupong & Plangklang, 
2017). Based on this flexibility of consumption periods, the efficient 
scheduling of home appliances can contribute to obtaining a reshaped 
demand profile with the mitigation of demand peak in periods with a 
more economical tariff. 

One way to reshape the demand profile towards a homogeneous 
distribution of consumption is by improving the load factor (LF), which 
in turn indicates the efficient usage of electricity. The LF is equal to the 
ratio between average demand and maximum demand for a given period 
(day, week, month, etc.). In addition, the LF value varies between zero 
and one (Nuchprayoon, 2016). When its value is close to one, the de-
mand profile will show a homogeneous distribution of consumption 
throughout the day. In this case, the average and maximum demand are 
very close. If its value is close to zero, the consumption profile will 
present a heterogeneous distribution with the presence of peaks and 
valleys (Nuchprayoon, 2016; Saikia, Manas, & Baruah, 2015). The 
concerns reported above are the main source of motivation for this 
research. In this way, this study has developed an intelligent tool for 
scheduling home appliances for residential customers, reducing peak 
demand, according to the consumption preferences of each customer, 
without the occurrence of new peak consumption during off-peak pe-
riods, which in turn, contributes to the improvement of the LF and the 
reduction of overloads in feeders and transformers, postponing future 
investments in grid maintenance. 

1.2. Related works 

In the vast majority of studies, DR programs aiming to minimize 
expenditures related to the customers’ energy bills through the shaving 
of peak demand. Thus, reference (Shakouri & Kazemi, 2017) proposed a 
multiobjective mixed-integer linear programming (MILP) model to 
schedule a set of home appliances. The model aims to minimize the 
energy bill taking into account the daily energy needs as well as con-
sumption preferences. References (Yahia & Pradhan, 2018) and (Yahia 
& Pradhan, 2020) addressed the problem of scheduling home appli-
ances. In both studies, the objectives to be minimized were related to the 
reduction of peak load, energy bill, as well as the inconvenience of 
scheduling appliances according to consumption preferences. In (Yahia 
& Pradhan, 2018) the experimental analysis considered a single 

consumer, while (Yahia & Pradhan, 2020) evaluated the performance of 
the proposal for a group of consumers. The performance of the applied 
strategies was corroborated with data from the literature. These strate-
gies have been effective in minimizing the objectives taking into account 
the management of inconveniences in the appliances usage. In (Ghorashi 
et al., 2020), the authors implemented a DR program that considered the 
economic rewards and penalties for consumers. These incentives were a 
function of the electricity company’s requirements and the domestic 
demand available to be reduced to mitigate congestion during power 
supply. The work of (Khalid et al., 2018) developed a methodology for 
efficient scheduling of smart home appliances. A tariff scheme, as well as 
hourly preferences and consumption patterns of customers, were 
considered in reducing peak demand. Similarly, in (Croce et al., 2017), 
via a DR program, an automatic load control architecture was imple-
mented in a community of residential and industrial customers to reduce 
peak demand. (Wang, Lin, Liu, Sun, & Wennersten, 2018) developed an 
efficient energy management scheme to reduce expenses on the energy 
bill of a multi-occupant residence. Domestic loads were considered to be 
shiftable and sheddable loads. The results showed a reduction in elec-
tricity consumption without interrupting the occupants’ comfort. Fuzzy 
logic techniques were used by (Farham, Mohammadian, Alipour, & 
Pouladi, 2019) to allocate the demand of large number of consumers at 
certain times of the day. Considering a time-varying tariff scheme, this 
investigation aims to minimize the expenses on customers’ electricity 
bills. References (Setlhaolo and Xia, 2015) and (Setlhaolo & Xia, 2016) 
addressed the problem of optimal scheduling of appliances. In (Setlhaolo 
and Xia, 2015), the scheduling considered a battery as a storage device 
as well as a strategy to coordinate its operation with the power grid. In 
(Setlhaolo & Xia, 2016), in addition to a storage system, the presence of 
a PV source was also considered. In both references, economic and 
technical constraints ensured the efficient operation of household ap-
pliances at minimal cost. An efficient management scheme based on 
smart plugs was proposed by (Heo, Park, & Lee, 2017). In addition to 
turning on/off domestic loads, these devices provide customer con-
sumption information, and, in case of insufficient supply, these plugs 
disconnect non-priority loads, thus minimizing energy waste. An energy 
management system was used by (Keerthisinghe, Verbic, & Chapman, 
2018) to reduce the coincident usage of appliances with higher average 
power. Technical and operational restrictions related to household ap-
pliances were taken into account to achieve energy savings. Another 
domestic energy management system was proposed by (Anzar et al., 
2018). In this work, a knapsack algorithm to find the optimal scheme for 
managing schedule and non-schedule appliances with minimal expense 
was used. In (Sehar, Pipattanasomporn, & Rahman, 2017), the authors 
proposed an efficient control of cooling and lighting loads in commercial 
buildings. The control strategy considers the behavior of the occupants 
to minimize energy consumption during peak hours. Automatic systems 
aiming to reduce peak demand were developed by Alquthami & 
Meliopoulos (2018), Chakraborty, Mondal, & Mondal (2020) and Far-
rokhifar, Momayyezi, Sadoogi, & Safari (2018) and. Reference Farro-
khifar et al. (2018) proposed a linear integer programming model (LIP) 
to optimize the level of automation home. The authors Chakraborty 
et al. (2020) used the G-MinPeak and LevelMatch algorithms to establish 
the efficient scheduling of residential loads, while Alquthami & Melio-
poulos (2018) scheduled domestic loads in the presence of EVs charging. 
In these last surveys, the peak reduction contributed to avoiding over-
loading the distribution system. Based on the predicted percentage of 
dissatisfaction (PPD) model, a home energy automation strategy was 
proposed by Ma, Yu, Yang, & Yang (2019). The strategy reduces elec-
tricity costs through the optimal control of thermal equipment. The 
automatic adjustment of this equipment is a function of the variable 
tariffs. In Ahmed, Levorato, & Li (2018), the authors modeled cus-
tomers’ daily consumption using Markov techniques. Besides, hourly 
preferences were also considered in order to establish demand reduction 
policies in hours with higher energy costs. Following this same objec-
tive, the authors Basit, Sidhu, Mahmood, & Gao (2017) implemented an 
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autonomous system for scheduling home appliances based on the Dijk-
stra algorithm. The work Aduda, Labeodan, Zeiler, & Boxem (2017) 
proposed an automation system for controlling thermal loads of a group 
of domestic consumers. The proposed system aimed to minimize the 
electricity bill based on the demand available to be reduced during 
heavy load times. Fuzzy logic techniques were applied by the authors 
Al-Mousa & Faza (2019) and Hosseinnia, Nazarpour, & Talavat (2018) 
and, aiming to change the consumption profile of customers. Reference 
Hosseinnia et al. (2018) used fuzzy rules to study several patterns 
related to residential consumption profiles considering the presence or 
not of electric vehicles (EVs). The model developed by Al-Mousa & Faza 
(2019) considered the flexibility of customers to change the consump-
tion periods of their appliances. A methodology that aims to determine 
the best DR strategy that consumers can adopt was developed by Yu 
et al. (2020). By reducing the distance peaks and valleys in the con-
sumption profile, this methodology minimizes peak consumption. 

Other studies have addressed the improvement of LF related to a set 
of consumers considering the integration of distributed sources and EVs 
in the power grid. For example, Villalobos et al. (2017) increased the LF 
value through the minimization of the losses of active power in the 
electrical grid. This minimization has considered the level of insertion of 
renewable sources and EVs. Similarly, Trongwanichnam, Thitapars, & 
Leeprechanon (2019) improved the LF value through the optimal co-
ordination of both power generation sources and battery charging of 
EVs. Also, improving LF through energy management was addressed in 
the following surveys. In Ali, Hasanuzzaman, & Rahim (2018), the au-
thors through the implementation of energy waste reduction programs 
aim to increase the LF of a university building. The reference Surai & 
Surapatana (2014) implemented an optimal scheme for domestic 
equipment in order to reduce peak demand, which consequently mini-
mizes consumption expenses and improves LF. A DR strategy that aims 
to meet the energy requirements of customers and the electricity grid 
was developed by Chiu, Hsieh, & Chen (2020). Through the use of an 
evolutionary algorithm and the analysis of the Pareto Frontier, the 
strategy minimized consumption costs in periods of the day with heavy 
demand, thus increasing the LF. The reference Saikia et al. (2015) 
developed a load management strategy in the distribution network. In 
this strategy, the minimization of losses allowed the improvement of the 
LF. To improve the LF of a set of commercial buildings, the authors 
Fardan, Gahtani, & Asif (2017) developed a strategy for reducing elec-
tricity consumption that considers a variable tariff during the day 
together with the control and monitoring of electrical equipment. 
Despite the different approaches aforementioned, there are still gaps 
with regard to the improvement of the LF while the occurrence of new 
peaks in periods with an economic energy tariff is being mitigated. 
Therefore, this research tries to fill this knowledge gap in the search for 

mutual financial benefits for both customers and ECOs. Table 1 high-
lights the features that are included (✓) and not included (×) in each 
work mentioned above in comparison to the present approach, which 
includes all of them. To this end, the features that are taken into account 
are: mitigation of new consumption peaks by improving the LF (F1); 
reduction in the coincident consumption of household appliances with 
higher average power (F2); scheduling household appliances consid-
ering consumer preferences (F3); and minimizing peak load and elec-
tricity costs (F4). 

1.3. Contributions 

In this paper, a MILP model to mitigate the occurrence of new peak 
demand at times with lower energy tariffs is proposed. Mitigation is 
achieved by the intelligent scheduling of home appliances, especially 
those with higher average power, avoiding coincident consumption at 
certain off-peak times. An hourly tariff scheme, as well as consumer 
preferences differentiated by each home appliances, are used to direct 
the efficient usage of household appliances (including EV) in each smart 
home. The objective function of the MILP model aims to minimize the 
financial expenses of both customers and ECOs while taking into account 
technical and operational restrictions related to household appliances 
and the EV battery. The Monte Carlo Method (MCM) is used to simulate 
the uncertainties related to the customers’ habitual consumption pat-
terns. The commercial solver CPLEX is used to found the optimal solu-
tion to this problem. In the analysis of two case studies, the results 
showed the efficient performance of the proposed model to obtain 
financial and operational benefits for users and ECOs without compro-
mising the quality of power supply. In summary, the key contributions of 
this paper are as follows:  

1) Proposing a computationally efficient MILP model to improve the LF 
value while the peak demand in periods with low tariffs is mitigated. 

2) Establishing scheduling schemes based on customers hourly prefer-
ences to avoid the coincident consumption of household appliances 
(mainly those with higher average power) as well as PEVs battery 
charging aiming to reduce congestion during the energy supply.  

3) From a sustainable point of view, the application of this intelligent 
tool by ECOs in a SG environment in order to reduce the dependence 
on fossil fuel to meet the energy needs of the domestic customers. 

1.4. Paper organization 

The remainder of this work is organized as follows. The main hy-
potheses and stochastic simulations are explained in Section 2. Section 3 
formulates the MILP model and explains the linearization process. Sec-
tion 4 presents the discussion of the results related to the two case 
studies, as well as the sensitivity analysis of the weights. Finally, the 
conclusions, limitations, and the proposals related to the future exten-
sion of this work are given in Section 5. 

2. Simulation setup 

In this section, the main assumptions related to household appli-
ances, PEV batteries, and hourly tariff schemes, are mentioned (Di Santo 
et al., 2015). Moreover, explanations related to the consumer’s hourly 
preferences are also considered. Due to the difficulty of obtaining in-
formation about residential consumption patterns, consumer behavior 
related to uncertainties in the usage of home appliances (Christopher & 
Wang, 2014) was simulated using the MCM (Robert & Casella, 2004). 

2.1. Assumptions 

The key premises that guide this work are mentioned below. This 
research is carried out considering the advanced monitoring and mea-
surement environment depicted in Fig. 1. The problem is studied for a 

Table 1 
Analysis of related works in the existing literature.  

References 
Features 

F1 F2 F3 F4 

Ahmed et al. (2018), Al-Mousa and Faza (2019), Basit et al. 
(2017), Heo et al. (2017), Sehar et al. (2017), Setlhaolo 
and Xia (2015, 2016), Shakouri and Kazemi (2017),  
Yahia and Pradhan (2018, 2020) 

£ £ ✓ ✓ 

Ghorashi et al. (2020) ✓ £ £ ✓ 
Aduda et al. (2017), Alquthami and Meliopoulos (2018),  

Anzar et al. (2018), Chakraborty et al. (2020), Croce 
et al. (2017), Farham et al. (2019), Farrokhifar et al. 
(2018), Hosseinnia et al. (2018), Khalid et al. (2018),  
Keerthisinghe et al. (2018), Ma et al. (2019), Wang et al. 
(2018) and Yu et al. (2020) 

£ £ £ ✓ 

Ali et al. (2018), Trongwanichnam et al. (2019) and  
Villalobos et al. (2017) 

✓ £ £ £

Chiu et al. (2020), Fardan et al. (2017), Surai and 
Surapatana (2014) and Saikia et al. (2015) 

✓ £ £ ✓ 

Proposed MILP Model ✓ ✓ ✓ ✓  
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time horizon of one day that is discretized in periods t of one hour. 
Consumer groups are analyzed considering a smaller number of cus-
tomers with the same number of appliances, as well as a greater number 
of customers, but with different appliances present in each home. This 
assumption is related to the consumer’s household income. According to 
DEA Technical Note 14/10 (2010), IBGE – Brazilian Institute of Geog-
raphy & Statistics (2019) and Residential Class Brazil Report (2007), the 
possession of household appliances in a home is related to family in-
come. When the income is higher, the purchase of home appliances also 
increases, which in turn causes a greater consumption of electricity; 
otherwise, the number of appliances is lower, which does not generate 
significant expenses on the energy bill. It is assumed that, for each smart 
home, all appliances have an independent operating regime, e.g., the 
clothes dryer and washing machine can be used without considering the 
sequential logic. Furthermore, the set of appliances and the EV are 
differentiated through βa. For the EV, the value of βa is − 1. In the case of 
appliances present in the smart home, βa adopts two values, 1 and 0. 
βa = 1 indicates the appliances with an operating regime greater than or 
equal to 1 h. βa = 0 value represents appliances with an operating regime 
of less than 1 h. The differentiation of household appliances by the 
operating regime is motivated by the fact that they can be used one or 
more times a day and depending on the customer’s usage habits, in 
short, or long periods. For example, an electric shower can be used for 
10 min in a given period t. The microwave, for heating the food, for a 
time of approximately 20 min also within a given period t. Both cases 
represent the appliances used for short periods in the day. On the other 
hand, TVs, with an average usage time of 5 h, (see Table 2) can have a 
usage regime of 2 h in the morning (two periods t), 1 h in the afternoon 
(one period t) and the remaining 2 h during the night (two periods t), 
thus completing 5 h. The efficient scheduling of these household appli-
ances is performs based on the technical data presented in Table 2 
(Anzar et al., 2018; Cerna, Pourakbari-Kasmaei & Gallego, 2018). It is 
worth noting that, in Table 2, each PEV battery is differentiated by its 
capacity, Bu. A tariff scheme that considers three hourly levels, as re-
ported in Table 3 (ANEEL, 2016), is used to lead the scheduling of 
consumption periods of household appliances. 

2.2. . Consumer hourly preferences 

Due to the different energy consumption priorities of customers, 
defining a level of flexibility (postponed or anticipate) of the periods of 

usage of each appliance is complicated. A high level of flexibility can 
compromise the satisfaction of customers’ needs. Unlike, when this 
flexibility is low or restricted to short periods of the day, the con-
sumption of household appliances can coincide, thus resulting in an 
economically inefficient scheme. Therefore, flexibility in the hourly 
preferences of each appliance is a key factor to ensure efficient 

Fig. 1. SG environment.  

Table 2 
Technical data to each smart appliance.  

a Appliances Pa  βa  tav
a  qa  ta  qa  β’

a  

1 Air Conditioner 4.00 1 2 2 0.25 – 1 
2 Freezer 0.40 1 10 10 0.50 – 0 
3 Clothes Dryer 3.50 1 1 1 0.50 – 1 
4 Computer 0.25 1 2 2 0.50 – 0 
5 Incand. Light 0.10 1 5 5 0.25 – 0 
6 TV 0.09 1 5 5 0.50 – 0 
7 Electric Iron 1.00 1 1 1 0.25 – 1 
8 Fan 0.10 1 4 4 0.50 – 0 
9 DVD Player 0.025 1 2 2 0.25 – 0 
10 Stereo 0.020 1 2 2 0.25 – 0 
11 Electric Faucet 3.50 0 0.50 1 – 1 1 
12 Dishwasher 1.50 0 0.75 1 – 1 1 
13 Coffe Maker 1.00 0 0.50 1 – 1 0 
14 Resistance Oven 1.50 0 0.50 1 – 1 0 
15 Electric Shower 3.50 0 0.15 1 – 1 1 
16 Microwave 1.30 0 0.33 1 – 1 0 
17 Washing Machine 1.50 0 0.50 1 – 1 0 
18 Vacuum Cleaner 1.00 0 0.33 1 – 1 0 
19 Hair Dryer 0.70 0 0.50 1 – 1 0 
20 Toaster 0.80 0 0.16 1 – 1 0 
a Appliances Ppev  βa  Bu  tevu  qch

u  β’
a  

21 

PEV 1 

4.00 − 1  

20.0 

0.50 

5.00 

1 PEV 2 28.0 7.00 
PEV 3 32.0 8.00 
PEV 4 24.0 6.00  

Table 3 
Electricity price levels.  

Levels Periods (h) Tariff ($/kWh) 

Off-peak 0 h–17 h; 22 h–24 h 0.22419 
Intermediate 17 h–18 h; 21 h–22 h 0.32629 
Peak 18 h–21 h 0.51792  
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scheduling of appliances as well as the optimal operation of the supply 
network. This work assumes four types (e.g., type 1, 2, 3, and 4) of 
consumer hourly preferences and are defined and shown in Fig. 2 
(Rahman, Arefi, Shafiullah, & Hettiwatte, 2018; Yahia & Pradhan, 
2020). 

Fig. 2 shows the types of hourly preferences to be considered for 
domestic customers. Each type of preference depicted in this figure is the 
result of adding the hourly preferences of each appliance present in the 
smart home. In addition, each type of preference, i.e., type 1, 2, 3, and 4, 
presents for each period t the number of household appliances connected 
for consumption. Fig. 3 shows the types of hourly preferences related 
only to household appliances such as air conditioning (figures on the 
left) and PEV (figures on the right). For air conditioning, i.e., Fig. 3(a), 
(c), (e), and (g), each type of preference related to a given consumer 
shows the time intervals in which this appliance can be connected for 
energy consumption without affecting the comfort of these customers. 
As mentioned earlier, each smart home has a unique PEV. Thus, Fig. 3 
(b), (d), (f), and (h) show the respective hourly preferences in which 
each customer could connect the battery of their PEV for charging 
without compromising the use of this vehicle in daily activities. Note 
that although most PEVs can be connected from early evening until 
dawn, there are also hourly preferences in which the flexibility of the 
periods can take into account the afternoon and evening periods. Hourly 
preferences are represented by θc

u,a,t in Eqs. (2) and (3) within the pro-
posed MILP model. In the SG environment (i.e., with advanced 
communication infrastructure, as illustrated in Fig. 1), hourly prefer-
ences can be inserted into the smart meters of each smart home and thus 
programmed by customers according to the desired level of comfort in 
the usage of each appliance. 

2.3. Uncertainties in domestic consumption behavior 

The behavior of residential customers regarding energy consumption 
varies during the day. This variation occurs according to the needs of 
each domestic customer. This means that the household appliance usage 
within each smart home can be represented by a probability (or un-
certainty) value for each period of the day. To make the proposed model 
more realistic, these uncertainties in each home are simulated using the 
MCM depicted in Fig. 4. 

The scheme is run considering the information related to Pa, D a,t, qa, 
qa, qch

u , and Δt, which are the average power of appliance a, the distri-
bution of the probability of using the appliance a at each period t (US 
Department of Energy, 2019), the number of times and the minimum 
number of times that an appliance a is turned on for consumption, as 
well as the minimum number of times that the PEV is turned on to 
charge its battery, and the duration of each period t, respectively. 
Moreover, each parameter described above is related to sets U, A, and T 

through their respective indexes u, a, and t. Next, the values of D a,t, 
X hu

u,a,t and Q u,a are initialized. Thus, D a,t and X hu
u,a,t are set to zero. Note 

that the value of Q u,a depends on βa. When βa = 1, then Q u,a adopts the 
value of qa. For the value of βa = 0, then Q u,a assumes the value of qa. For 
βa = -1 (case of PEV) the value adopted by Q u,a is qch

u . It is worth to 

mention that all the parameters highlighted above correspond to the 
input data of the scheme that aims to simulate the uncertainties related 
to the energy consumption of the participating customers. Then, an 
iterative process related to each appliance a is executed, and for each 
iteration, the accumulator s is set to zero. Thereafter, another iterative 
process for the periods t is done, in which D a,t is added to each current 
value of the accumulator s, obtaining a new value of s to be assigned to 
D̂ a,t. Both iterative processes end when the respective indexes t and a 
reach the values of |T| and |A|. Hereafter, an iterative process related to 
the set of domestic customers u is carried out. Then, a new iterative 
process for appliances a is done. Within this iterative process, for each 
appliance a, an infinite loop is performed, and in each iteration, a 
random number α is generated for values between 0 and 100. Next, 
block 1 receives the values of α via input (1) and returns the information 
via outputs (2) and (3). The data flow within block 1 is shown in detail in 
the same Fig. 4 on the right side. In block 1, the α value is evaluated 
under condition D̂ a,t− 1 ≤ α ≤ D̂ a,t within the iterative process related 
to set of periods t. When this condition is checked, then a unity value is 
assigned to X hu

u,a,t , otherwise the zero value remains. After completing 
the iterative process for all periods t (i.e., when the condition t = |T|), 
another condition 

∑|T|

t=1X hu
u,a,t = Q u,a is evaluated. When this condition is 

not met, then, through the output (3) of block 1, the flow is directed to 
continue executing the infinite loop; otherwise, if this condition is 
checked, then another iterative process for all periods t is performed and 
in each period t the value of H cp

u,a,t is calculated as the product of Pa, 
X hu

u,a,t , and Δt. Once the condition t = |T| is met, the infinite loop is 
broken and, through the output (2) of block 1, condition a = |A| is 
evaluated. If this condition is not met, the iterative process continues to 
be performed for each appliance a; otherwise, condition u = |U| related 
to the iterative process of customers u is evaluated. Likewise, iterations 
are performed until the condition is met. In this case, the execution of 
the scheme ended thus obtaining the values X hu

u,a,t and H cp
u,a,t as outputs. 

Finally, the habitual profile H cp
u,a,t is part of the input data for the pro-

posed MILP model, specifically is used in Eq. (17). 

3. The proposed model 

This section provides details of the mathematical formulation related 
to the problem of mitigating the occurrence of new demand peaks in the 
domestic consumption profile by the improvement of the LF. 

3.1. MINLP model 

Initially, the problem is formulated as a mixed-integer nonlinear 
programming (MINLP) model expressed by (1) − (20). 

3.1.1. Objective function  

min F                                                                                            (1) 

In (1), F is the objective function that has as components functions 
Ω1, Ω2, and Ω3 shown below. 

Fig. 2. Hourly preferences for total appliances.  
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Ω1 = μ’ ×

[
∑

∀t∈T

∑

∀a∈A

∑

∀u∈U

ζt × O
cp
u,a,t

]

Ω2 = μ’’ ×

[
∑

∀u∈U

∑

∀t∈T

θ’
u,t

]

Ω3 = μ’’’ ×

[
∑

∀t∈T

(
Peu

t − Peu
)2

]

Function Ω1 is related to minimizing the monetary expenses of en-
ergy consumption, O

cp
u,a,t, for all domestic customers. Function Ω2 is 

related to the coincident factor, θ’
u,t, which represents for each customer 

u the number of appliances with higher average power that are con-
nected in a given period t. In this way, Ω2 minimizes the coincident 
usage of this type of appliance. It is worth mentioning that the mini-
mization of functions Ω1 and Ω2 represent, per customer, the financial 
gains obtained through a reduction in the energy bill. The ECO’s 
financial gain is represented by function Ω3. As previously discussed, the 
improvement of the LF guarantees the efficient usage of energy in the 
ECO supply grid. Thus, the maximization of the LF can be achieved when 
the square of the difference between Peu

t and Peu is minimized. Please 
note that in the solution of the problem, each function Ω1, Ω2, and Ω3 

will have a given level of influence according to the values to be adopted 
by the respective weights μ’, μ’’, and μ’’’. Based on the already 
mentioned, to guarantee mutual gains, function F in (1) should be 

Fig. 3. Hourly preferences for air conditioning and PEV.  

Fig. 4. Scheme to simulate uncertainties in the behavior of energy consumption.  
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minimized taking into account the set of constraints detailed below. 

3.1.2. Operational constraints 
Constraints related to the consumption of smart household appli-

ances are mathematically formulated as follows: 

X
ou
u,a,t = 0, ∀u ∈ U,∀a ∈ A, ∀t ∈ T : θc

u,a,t = 0 (2)  

X
ou
u,a,t ≤ 1, ∀u ∈ U,∀a ∈ A, ∀t ∈ T : θc

u,a,t = 1 (3)  

θ’
u,t =

∑

∀a∈A
X

ou
u,a,t × θc

u,a,t × β’
a, ∀u ∈ U,∀t ∈ T (4)  

∑

∀t∈T
X

ou
u,a,t × θc

u,a,t = qa, ∀u ∈ U, ∀a ∈ A : βa = 0 (5)  

O
cp
u,a,t = Pa × X

ou
u,a,t × θc

u,a,t × tav
a , ∀u ∈ U, ∀a ∈ A, ∀t ∈ T : βa = 0 (6)  

q
a
≤

∑

∀t∈T
X

ou
u,a,t × θc

u,a,t ≤ qa, ∀u ∈ U, ∀a ∈ A : βa = 1 (7)  

ta ≤ τus
u,a,t ≤ ta, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T : βa = 1 (8)  

O
cp
u,a,t = Pa ×

(
X

ou
u,a,t × θc

u,a,t

)
×
(

τus
u,a,t

)
, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T : βa = 1

(9)  

tav
a =

∑

∀t∈T

(
X

ou
u,a,t × θc

u,a,t

)
×
(

τus
u,a,t

)
, ∀u ∈ U, ∀a ∈ A : βa = 1 (10)  

G
ev
u,t = Pev × X

ou
u,a,t × τev

u,t, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T : βa = − 1 (11)  

tev
u ≤ τev

u,t ≤ tev
u ,∀u ∈ U, ∀t ∈ T (12)  

qch
u
≤

∑

∀t∈T
X

ou
u,a,t ≤ qch

u ,∀u ∈ U, ∀a ∈ A : βa = − 1 (13)  

O
cp
u,a,t = G

ev
u,t,∀u ∈ U, ∀a ∈ A, ∀t ∈ T : βa = − 1 (14)  

G
s
u = SoC0

u +
∑

∀t∈T
G

ev
u,t,∀u ∈ U (15)  

G
s
u = ξ × Bu,∀u ∈ U (16)  

∑

∀a∈A
O

cp
u,a,t ≤ MAX∀t∈T

{
∑

∀a∈A
H cp

u,a,t

}

, ∀u ∈ U, ∀t ∈ T (17)  

Peu
t =

∑

∀u∈U

⎛

⎜
⎜
⎜
⎜
⎝

∑

∀a∈A

: βa≥0

Pa × X
ou
u,a,t × θc

u,a,t +
∑

∀a∈A

: βa<0

Pev × X
ou
u,a,t × θc

u,a,t

⎞

⎟
⎟
⎟
⎟
⎠
, ∀t ∈ T

(18)  

Peu
=

1
|T|

∑

∀t∈T
Peu

t (19) 

In Eqs. (2) and (3), the state (turned -on/-off) of smart appliances a at 
each period t is represented through variable X ou

u,a,t. In both equations, 
the hourly preferences related to each customer u, θc

u,a,t, are considered. 
Eq. (2) ensures that scheduling should not be done at periods t without 
customer preferences (θc

u,a,t = 0). In contrast, Eq. (3) establishes that 
scheduling must be done (or not) at periods t with hourly preferences 
(θc

u,a,t = 1) already established for electricity consumption. In Eq. (4), the 
coincidence factor, θ’

u,t, related to each customer u is calculated as the 
number of smart appliances a (with β’

a = 1) that are turned on at each 
period t. 

Constraints related to the appliances a with consumption hours less 
than one hour (βa = 0) are established by Eqs. (5) and (6). The number of 
times during the day that customer u turned on a given appliance a for 
energy consumption is guaranteed in Eq. (5). In addition, the energy 
required at each period t when a customer u turns on the appliance a is 
calculated using Eq. (6). 

Eqs. (7) − (10) are related to the appliances a with consumption 
hours greater than or equal to one hour (βa = 1). In Eq. (7), the number 
of times that the appliances a can be turned on for power consumption is 
bounded by qa and qa. Similarly, in Eq. (8), values ta and ta are used to 
establish the lower and upper bounds related to the energy consumption 
time of each appliance a in each period t. It is worth mentioning that the 
upper limit ta is less than or equal to one hour. The energy consumed by 
a given smart appliance a with βa = 1 at the period t is calculated by Eq. 
(9). Furthermore, Eq. (10) allows to determine the tav

a value. 
The charging of PEV batteries (βa = − 1) is modeled considering the 

Eqs. (11) − (16). For a given customer u, the energy stored in his PEV 
battery at period t is calculated according to Eq. (11). In Eq. (12), the 
variation interval related to the charging time of the PEV battery is 

defined between limits tev
u and tev

u . Likewise, in Eq. (13), the interval 
[

qch
u ,

qch
u

]

determines the number of recharges that can be made by the PEV 

battery. In Eq. (14), the value of G
ev
u,t is assigned to O

cp
u,a,t. The total 

energy of the PEV’s battery, G s
u, is calculated, in Eq. (15), considers the 

initial state-of-charge SoC0
u as well as the value of G

ev
u,t previously 

calculated. Eq. (16) sets the final energy state to a value equal to a 
percentage ξ multiplied by the capacity of the PEV battery, Bu. 

Eq. (17) establishes that, for customer u, the optimal consumption 
O

cp
u,a,t in a given period t must be less than or equal to the maximum peak 

related to the habitual consumption H cp
u,a,t. Eqs. (18) and (19) are related 

to the power supplied by the ECO to residential customers. This power 
supplied for all smart appliances, including PEVs, in each period t is 
calculated in Eq. (18). Using Eq. (19), the average value of Peu

t is also 
calculated. 

3.2. Linearization 

In order to ensure the global solution of the proposed MINLP model, 
the function Ω2, as well as the Eqs. (9)–(11) must be linearized. There-
fore, a set of linearization techniques to recast these nonlinear terms is 
applied. 

The following equations are the result of linearizing the function Ω3 
based on (Borges, Franco, & Rider, 2014; Gonçalves, Alves, Franco, & 
Rider, 2013). Thus, Ω’

3 aims to replace the quadratic function Ω3. At the 
same time, Eqs. (20) − (25) are considered in the proposed model. 

Ω’
3 = μ′′′

×

[
∑

∀t∈T

∑|Y |

y=1
Πt,yΔΓt,y

]

Γt = Peu
t − Peu

, ∀t ∈ T (20)  

Γ+
t − Γ−

t = Γt, ∀t ∈ T (21)  

Γ+
t − Γ−

t =
∑|Y|

y=1
ΔΓt,y, ∀t ∈ T (22)  

0 ≤ ΔΓt,y ≤ Δt, ∀t ∈ T, ∀y ∈ 1. . |Y| (23)  

0 ≤ Γ+
t , ∀t ∈ T (24)  

0 ≤ Γ−
t , ∀t ∈ T (25) 

To linearize Eqs. (9)–(11), the Big-M method applied by (Cerna, 
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Pourakbari-Kasmaei, & Gallego, 2018; Cerna, Pourakbari-Kasmaei, 
Romero, & Rider, 2018) is used. Thus, Eqs. (9) and (10) are replaced 
by the respective Eqs. (26) and (27), while Eqs. (28) and (29) are also 
considered. 

O
cp
u,a,t = Pa × θc

u,a,t ×
(

Δτus
u,a,t

)
, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T : βa = 1 (26)  

tav
a =

∑

∀t∈T
θc

u,a,t ×
(

Δτus
u,a,t

)
, ∀u ∈ U, ∀a ∈ A : βa = 1 (27)  

0 ≤ − Δτus
u,a,t + τus

u,a,t ≤ M ×
(

1 − X
ou
u,a,t

)
, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T (28)  

0 ≤ Δτus
u,a,t ≤ M × X

ou
u,a,t, ∀u ∈ U, ∀a ∈ A,∀t ∈ T (29) 

Similarly, Eq. (11) is replaced by linearized Eqs. (30) − (32) shown 
below: 

G
ev
u,t = Pev × X

ou
u,a,t × τev

u,t, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T : βa = − 1 (30)  

0 ≤ − Δτev
u,a,t + τev

u,a,t ≤ M ×
(

1 − X
ou
u,a,t

)
, ∀u ∈ U, ∀a ∈ A, ∀t ∈ T (31)  

0 ≤ Δτev
u,a,t ≤ M × X

ou
u,a,t, ∀u ∈ U, ∀a ∈ A,∀t ∈ T (32)  

3.3. The MILP model 

The linearized model is obtained considering the equations listed 
below. 

min(1)
s.t. : (2)–(8); (12)–(19); (20)–(25); (26)–(29), (30) − (32)

4. Case studies and results 

The two case studies depicted in Fig. 5 are used to assess the per-
formance of the proposed model. In each case, the four types of hourly 
preferences, θc

u,a,t, (see Fig. 3) explained above are considered. Case 
study 1 considers a group of 4 consumers (|U| = 4), all with the same 
household income, whereas case study 2 considers 12 customers 
(|U| = 12), with differentiated domestic income. Also, in case 1, all 
customer have different consumption patterns, H cp

u,a,t . In case 2, there 
are customers with similar consumption patterns. As can be seen in 
Fig. 5, in both cases, each consumer u has a certain type of hourly 
preference θc

u,a,t . Therefore, each case calculates the financial gains of 
customers and ECO when the preferences of consumers are diversified. 

The general information used in both case studies is described below. 
Twenty-one (|A| = 21) smart home appliances are considered for each 
customer u, including PEV. The operational characteristics of each 
appliance are detailed in Table 2. It is worth mentioning that for each 
appliance with βa = 1, in Table 2, the value of ta is equal to 1. Note that 
each PEV is related to a given type of hourly preference θc

u,a,t . Thus, type 
1 is related to PEV 1; type 2 is related to PEV 2, and so on. To assess 

efficient charging from an initial state to full capacity, Bu, PEVs batteries 
are initialized completely discharging, i.e., SoC0

u = 0. Moreover, sched-
uling strategy considers a hourly tariff (Table 3) for one day that is 
divided into 24 hourly periods (|T| = 24). Because the weight co-
efficients μ’, μ’’, and μ’’’ can adopt different values, in this research, the 
values attributed to these weights are based on the powers of 10 (e.g., 
10− 1, 10◦, 101, etc.). Thus, the level of influence of each cost function 
Ω1, Ω2, and Ω3, in the solution of the problem is given by their respective 
weights, μ’ and μ’’, and μ’’’, whose values are 10− 1 (0.1), 101 (10), and 
10◦ (1), respectively. Note that function Ω2 has the highest level of in-
fluence, while the lowest level of influence is related to function Ω1. 
Thus, the problem solution should consider reducing the energy bill by 
strongly avoiding the coincident usage of appliances with higher 
average power in given periods of the day. The values of the constants M 

and θ, and the number of discretization blocks |Y|, introduced in the 
linearization process, are set to 1000, 10, and 15, respectively. Also, the 
Δt value is considered fixed for each t and is obtained as 10/ |Y| (Cerna, 
Pourakbari-Kasmaei et al., 2018; Borges et al., 2014; Cerna, 
Pourakbari-Kasmaei, Romero et al., 2018). Furthermore, the habitual 
consumption profile, H cp

u,a,t , obtained via the scheme shown in Fig. 4 is 
used to represent customers’ consumption patterns. It is worth 
mentioning that this scheme is run before the proposed model. The 
habitual consumption profile H

cp
u,a,t is used by the MILP model to 

determine the optimal consumption profile O cp
u,a,t while the occurrence 

of peak demand in off-peak hours is mitigated. This proposed model is 
coded in AMPL (Fourer, Gay, & Kernighan, 2003) and solved using the 
CPLEX solver (IBM ILOG CPLEX V 12.1, 2009). Moreover, a 2.67-GHz 
computer with 3GB of RAM and CPU time of about 40.6 s, is used to 
approach this problem. 

4.1. Case study 1 

As mentioned above, this case study analyzes the gains obtained by 
customers and ECOs when consumers have different hourly preferences 
θc

u,a,t but with the same household income. Figs. 6 and 7 illustrate the 
profiles of H cp

u,a,t (dashed line) and O cp
u,a,t (continuous line) consumption 

related to air conditioning and PEV, respectively, which belong to the set 
of home appliances with higher average power (β’

a = 1, see Table 2). 
According to Fig. 6, domestic customers have the habit of turning on 

the air conditioning during the peak period or in hours surrounding it. 
Note that customer 2 turns on his air conditioning only during peak 
period, as shown in Fig. 6(b). Additionally, the air conditioning of cus-
tomers 1, 3, and 4 also consume energy within the same peak period, 
thus contributing to the emergence of the well-known peak demand. For 
the O cp

u,a,t profile, the figure reveals a wide distribution of the air con-
ditioning consumption periods t along off-peak hourly (low electricity 
tariff). Note that the distribution of consumption is carried out based on 
each type of hourly preference θc

u,a,t related to one consumer u, avoiding 
the coincident consumption of these appliances, i.e., minimizing the θ’

u,t 

Fig. 5. Case studies.  
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value. In Fig. 6(a), the consumption of the air conditioning, related to 
customer 1, is shifted from 20 h – 21 h (H cp

u,a,t profile) to 11 h – 12 h 
(O cp

u,a,t profile). Besides, the usage of air conditioning in the period 
13 h – 14 h (O cp

u,a,t profile) remains the same in comparison to H
cp
u,a,t 

profile. Note that to mitigate the appearance of new peaks, the proposed 
model should schedule the air conditioning consumption of customers 2, 
3, and 4 for the rest of the hours within the off-peak period considering 
the respective hourly preferences θc

u,a,t . Based on this, the efficient 
scheduling (O cp

u,a,t profile) of air conditioning related to customers 2 and 
3 in Fig. 6(b) and (c), is done for the periods 15 h–17 h and 9 h–11 h, 
respectively. These periods are after and before the consumption hours 
of the air conditioner related to the customer 1. For customer 4, Fig. 6 
(d), the air conditioning consumption periods are shifted from 19 h to 
20 h and 22 h to 23 h (H cp

u,a,t profile) to the beginning of the morning, i. 
e., 4 h–5 h and 6 h–7 h (O cp

u,a,t profile). Please note that the scheduling of 
air conditioning consumption periods, for each customer, is made 
considering the corresponding hourly preferences for this type of 
appliance, as shown in Fig. 3(a), (c), (e), and (g). 

Another smart appliance with higher average power is PEV, whose 
hourly preference types are shown in Fig. 3(b), (d), (f), and (h). Fig. 7 

shows, for each customer, the H cp
u,a,t (dashed line) and O cp

u,a,t (continuous 
line) profiles related to the full battery charging of each PEV. Habitually, 
customers 1, 2, and 3 charge the battery of their PEVs during night 
periods including the peak period. Customer 4, in addition to charging 
the battery of his PEV during the night 17 h – 20 h, also performs the 
charging in the early morning 4 h–7 h. The charging of PEVs batteries 
coincidentally at certain times of the day, especially during the peak 
period, can contribute to creating bottlenecks in the supply network. For 
this reason, it is necessary to ensure efficient scheme for charging this 
electric mobility. To this end, the proposed model establishes an optimal 
scheme that allows the PEV battery charging to be adapted to hourly 
preferences of customers and thus smooth the operation of the electrical 
network. Thus, Fig. 7(a) shows the O cp

u,a,t profile established for charging 
the PEV 1 (with Bu equal to 20 kW h) during the dawn periods 1 h–4 h 
and 5 h–6 h, as well as at night 22 h – 23 h. The optimal battery charge of 
the PEV 2, with a Bu capacity of 28 kW h, is shown in Fig. 7(b). Note that 
the battery charge is shifted from the 17 h – 24 h period in the H

cp
u,a,t 

profile to the 11 h–18 h period in the O
cp
u,a,t profile avoiding the con-

sumption of electricity within the peak period. Likewise, Fig. 7(c) il-
lustrates the optimal PEV 3 recharge (Bu equal to 32 kW h). Note that the 
greatest number of hours for charging the battery is scheduled for pe-
riods 1 h–5 h (dawn) and 7 h–8 h (morning). The total battery capacity is 
fully filled within the 17 h–18 h and 23 h–24 h periods (close to the peak 
period). Finally, the battery charging of the PEV 4 (with Bu of 24 kW h) 
shown in Fig. 7(d) is shifted from 17 h–20 h (H cp

u,a,t profile) for the pe-
riods of 8 h–10 h and 12 h–13 h (O cp

u,a,t profile). It is worth noting that the 
efficient charging of PEVs batteries is carried out considering a wide 
distribution of energy consumption within the off-peak period, 
contributing to the improvement of the LF. 

The reduction in the coincident energy consumption of appliances 
with higher average power (β’

a = 1, see Table 2) can be better appreci-
ated in Fig. 8. This figure illustrates the H cp

u,a,t profile, in dashed line, as 
well as the O cp

u,a,t profile, in continuous line, related to the number of 
appliances with β’

a = 1 that are connected for energy consumption in 
each period t. In Fig. 8(a) related to customer 1, the maximum number of 
appliances connected for energy consumption in the H

cp
u,a,t profile is 

equal to 4. Being connected within the peak period. In the case of the 
O

cp
u,a,t profile, this number of appliances is reduced to 2, with the rest of 

the appliances scheduled in periods with low energy tariffs. For the rest 
of the customers related to Fig. 8(b)–(d), the maximum number of ap-
pliances connected for consumption in a given period t is reduced from 3 
(in each H cp

u,a,t profile) to 2 (in each O cp
u,a,t profile). It is worth mentioning 

that all customers show a reduction in the number of household appli-
ances connected in the peak period. Note that the maximum number of 
household appliances scheduled for consumption in the off-peak period 
reaches a value of 2 for each customer. 

Fig. 9 shows, in dashed and continuous lines, the profile of H cp
u,a,t and 

O
cp
u,a,t consumption, respectively, when the 21 appliances (including 

PEV) reported in Table 2 are considered for each customer. In the H cp
u,a,t 

consumption profile, each domestic customer has a consumption of 
17.055 kW h; 27.044 kW h; 23.024 kW h; and 15.044 kW h within the 
peak period, i.e., 18 h–21 h. In the O cp

u,a,t consumption profile, the energy 
to be consumed within the same period is equal to 18.74 % (customer 1); 
9.31 % (customer 2); 11.65 % (customer 3), and 8.75 % (customer 4) of 
the energy consumed in the H cp

u,a,t profile during the period 18 h–21 h. 
This fact reveals that approximately 80 % of the energy consumed 
during the peak period related to the H

cp
u,a,t profile is scheduled effi-

ciently within the off-peak period related to the O cp
u,a,t profile. Fig. 9(a) 

shows the maximum consumption values for each H
cp
u,a,t (9 kW h at 

period 20 h–21 h) and O cp
u,a,t (5 kW h at period 13 h–14 h) profile related 

to customer 1. In the case of domestic customers 2, 3, and 4 related to 
Fig. 9(b)–(d), the maximum consumption values (O cp

u,a,t profile) are close 

Fig. 6. Habitual and optimal consumption profile of air conditioning.  

Fig. 7. Habitual and optimal consumption profile of PEV.  
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to 8 kW h for the periods 15 h–17 h, 0 h–1 h, and 4 h–5 h, respectively. 
Note that the maximum consumption values of customers are allocated 
in different periods, mitigating the appearance of high consumption 
peaks, which in turn contributes to the increase in the LF value. 

Fig. 10 shows the profile of H cp
u,a,t and O cp

u,a,t consumption of the total 
number of customers shown in Fig. 9. Fig. 10 also illustrates in black and 
white bars, the LF values related to both consumption profiles. Fig. 10(a) 
shows the H cp

u,a,t profile (dashed line) with a heterogeneous distribution 
of consumption during the day, with an LF value around 0.195. Note 
that this value is close to zero, which indicates an inefficient energy 
usage. In addition, there is high level of congestion during power supply 
within the peak period, compromising the reliability of the system. In 
the O cp

u,a,t profile (continuous line) obtained by applying the proposed 

model, the energy consumed within the peak period is approximately 
equal to 20 % of the consumption related to the H cp

u,a,t profile (dashed 
line) within the same period. Note that the distribution of consumption 
in this O

cp
u,a,t profile is strongly homogeneous, i.e., a higher LF value 

equal to 0.709. This means that the efficient usage of electricity in this 
profile is guarantee considering the customers’ hourly preferences θc

u,a,t. 
Fig. 10(b) shows the LF values related to the H cp

u,a,t (black bars) and O cp
u,a,t 

(white bars) consumption profile of each customer and the total number 
of customers. For each domestic customer, the LF increase is approxi-
mately 0.10, while for the total number of customers, the LF value 
increased significantly from 0.195 to 0.709. Note that the homogeneous 
distribution of the total O cp

u,a,t consumption profile (high LF value) is the 

Fig. 8. Number of appliances (β’
a = 1) turned on for consumption.  

Fig. 9. Habitual and optimal consumption profile for the 4 customers.  

Fig. 10. Consumption profile and LF values for the 4 customers.  
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result of adding the O cp
u,a,t consumption profile of each customer (low LF 

value), which presents a heterogeneous distribution in energy con-
sumption over the off-peak period. 

Fig. 11 shows the daily expenses related to both the H
cp
u,a,t (black 

bars) and O cp
u,a,t (white bars) profile of each customer and for all of them. 

Table 4 summarizes in numerical values the results presented in the 
previous figures. Note that for each consumer, expenses related to the 
O

cp
u,a,t consumption profile represent 70.19 %, 62.26 %, 66.06 %, 69.29 

% of expenses related to the H
cp
u,a,t consumption profile. For all con-

sumers, total spending is reduced to 33.38 % (from the H
cp
u,a,t profile 

with $ 75.302, to the O
cp
u,a,t profile with $ 50.160), thus ensuring 

financial savings. Therefore, this case study showed how the different 
hourly preferences of each customer within the consumer group can 
contribute to the optimal scheduling of appliances, ensuring efficient 
usage of energy, i.e., improving the LF. In this way, maintenance in-
vestments by ECO can be postponed while saving on each customer’s 
energy bill. 

4.2. Case study 2 

In this case, the number of customers is three times the previous case. 
As can be seen in Fig. 5, each consumer adopts a certain type of hourly 
preference θc

u,a,t (see Fig. 2). Moreover, the same type of hourly prefer-
ence can be adopted by different customers, e.g., customers 1 and 9 
adopt the same type 1; customers 2, 7, 8, and 10 adopt type 2; and so on. 
In order to represent a group of consumers with different family in-
comes, this case study considers that most customers have different 
number of appliances present in the home. Table 5 shows the appliances 
present in each customer’s home. For example, in the home of customer 
10, there are appliances 2, 5, 6, 7, 8, 10, 15, 16, and 17, which, based on 
Table 2, correspond to freezer, incand. light, TV, electric iron, fan, ste-
reo, electric shower, microwave, and washing machine, respectively. 
Note that customers 1, 3, 6, 9 and 11 have PEVs. Air conditioning is not 
present in the homes of customers 2, 3, 6, 7, 8, 10, and 11. Additionally, 
the number of appliances with β’

a = 1 is 7 for customer 1; 2 for customer 
2; 3 for customer 3; 3 for customer 4; 3 for customer 5; 2 for customer 6; 
1 for customer 7; 2 for customer 8; 7 for customer 9; 2 for customer 10; 3 
for customer 11; and 3 for customer 12. 

Fig. 12 depicts the H cp
u,a,t (dashed line) and O cp

u,a,t (continuous line) 
profiles for each consumer reported in Table 5. Note that the vast ma-
jority of consumers (i.e., 1, 3, 4, 5, 6, 9, 11, and 12) experience a 
reduction in peak demand. Also note that although there are customers 
with similar consumption habits, H cp

u,a,t, their O cp
u,a,t profiles are different. 

For example, customers 1 and 9, (Fig. 12(a)) and (i)), respectively, both 
with peak consumption close to 10 kW h (in profile H cp

u,a,t). However, 
during peak hours, customer 9 achieved a lower reduction in electricity 
consumption compared to customer 1. Another case can be seen with 
customers 4 (Fig. 12(d)), 5 (Fig. 12(e)), and 12 (Fig. 12(l)), also with 
similar H cp

u,a,t profiles. Here, although the O cp
u,a,t profile for consumers 4 

and 5 shows a concentration of consumption in periods close to 
12 h–13 h, consumer 12 has very low consumption (less than 1 kW h) 
within that same period. Also, in all cases the peak consumption related 

to the O cp
u,a,t profile is less than the peak consumption of the H cp

u,a,t profile 
by 3 kW h. Also in Fig. 12, note that cases with a new peak of con-
sumption greater than or equal to the habitual peak of consumption are 
related to customers 2 (Fig. 12(b)), 7 (Fig. 12(g)), 8 (Fig.12(h)), and 10 
(Fig. 12(j)). For customer 8, the difference between the new peak con-
sumption (in profile O

cp
u,a,t) and the habitual peak consumption (in 

profile H cp
u,a,t) is close to 1 kW h. It is also worth noting that consumers 

with a large number of home appliances have a wide distribution of 
consumption throughout the day, while those with a smaller number of 
home appliances, the distribution of their consumption turns out to be 
heterogeneous. Thus, the sum of each individual profile O cp

u,a,t results in 
the profile O cp

u,a,t of all customers, which, in turn, shows the homoge-
neous distribution of consumption during the day, without presence of 
new consumption peaks at off-peak hours, as can be seen in Fig. 13(a). 

Fig. 13(a) shows the H
cp
u,a,t and O

cp
u,a,t profiles for all customers in 

Table 5. Note that the H
cp
u,a,t profile, in dashed line, the highest peak 

consumption of 57.61 kW h is reached in the period of 19 h – 20 h. In the 
same period, the O cp

u,a,t profile, in continuous line, shows a reduction in 
consumption by 85.36 % of this peak of habitual consumption. Note that 
the electricity consumption shifted to off-peak periods is widely 
distributed with a valley between 15 h–16 h. Also note that, within that 
time, the energy consumption remains close to 16 kW h. This represents 
approximately the third part of the peak consumption in the H

cp
u,a,t 

profile. Therefore, the proposed model also presents an efficient per-
formance for a greater number of consumers with differentiated family 
income. 

Fig. 13(b) depicts, for both consumption profiles, the LF values of 
each customer as well as for all 12 customers. Note how the LF value 
related to the H cp

u,a,t profile (in black bars) of each customer, including 
the LF of all customers, adopts values below 0.3, that is, close to 0. By 
applying the MIPQC model, the O

cp
u,a,t profile (in white bars) of most 

customers shows an improvement in LF with values ranging between 
0.13 and 0.45. However, this increase in the LF values of each customer, 
although low, has a greater effect on the value of the LF related to all 
customers, which turns out to be 0.72. This fact reinforces the 

Fig. 11. Daily expenses for the 4 customers.  

Table 4 
Expenses related to the habitual and optimal consumption profile of the 4 
customers.  

Type of 
Preferences Customers 

Habitual Profile Optimal Profile 

Expenses 
($) 

Load 
Factor 

Expenses 
($) 

Load 
Factor 

1 1 16.386 0.210 11.502 0.361 
2 2 21.231 0.184 13.220 0.276 
3 3 20.911 0.198 13.815 0.289 
4 4 16.774 0.170 11.623 0.256 
– Total 75.302 0.195 50.160 0.709  

Table 5 
Customers and their home appliances.  

Customer Appliances at the home Customer Appliances at the home 

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 
18, 19, 20, 21 

7 2, 5, 6, 8, 10, 15, 16, 17 

2 2, 5, 6, 7, 8, 10, 15, 16, 17 8 2, 5, 6, 7, 10, 15, 16, 17 
3 2, 4, 5, 6, 7, 8, 12, 16, 17, 

18, 20, 21 
9 1, 2, 3, 4, 5, 6, 7, 8,9, 10, 

11, 12, 13, 14, 15, 16, 17, 
18, 19, 20, 21 

4 1, 2, 5, 6, 7, 11, 13, 16, 17, 
18, 19 

10 2, 5, 6, 7, 8, 10, 15, 16, 17 

5 1, 2, 5, 6, 7, 11, 13, 16, 17, 
19 

11 2, 4, 5, 6, 7, 8, 12, 16, 17, 
18, 20, 21 

6 2, 4, 5, 6, 8, 12, 16, 17, 18, 
20, 21 

12 1, 2, 5, 6, 7, 11, 13, 16, 17, 
18,19  
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importance of the proposed tool that allows to schedule the consump-
tion of each consumer, in order to reduce the coincident usage of ap-
pliances with higher average power in periods with low energy tariffs 
which, consequently, guarantees the rational use of electricity mini-
mizing the expense unnecessary energy. 

Fig. 14 shows the daily expenses associated with each customer as 
well as for all of them. The black and white bars show these expenses for 
the H

cp
u,a,t and O

cp
u,a,t profiles, respectively. Table 6 details the values 

shown in Figs. 13(b) and 14 . These values are different for each con-
sumer and for the total number of consumers, for both consumption 
profiles. In addition, Table 6 shows the hourly preferences θc

u,a,t adopted 

by each consumer. Note that, among all customers, customer 8 does not 
show an improvement in LF. In this case, the value of LF in the con-
sumption profile was reduced from 0.2016 (in profile H cp

u,a,t) to 0.1370 
(in profile O cp

u,a,t). Thus, this consumer, in his profile O cp
u,a,t, presents a 

high peak consumption during off-peak hours, as seen in Fig. 12(h). 
Even with this occurrence, note that the expenditure for energy con-
sumption related to the O

cp
u,a,t profile (of 2.530 $) is less than the 

expenditure for the H cp
u,a,t profile (of 2.614 $) due to the consumption 

being concentrated during off-peak hours. Moreover, consumers with 
higher household income, i.e., higher energy consumption, as are 1, 3, 6, 
9, and 11, achieved a reduction of 35.25 %, 33.48 %, 35.69 %, 31.69 %, 

Fig. 12. Habitual and optimal consumption profile for the 12 customers.  
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and 29.15 %, respectively, in spending for habitual consumption. For 
low-income customers, with spending on habitual consumption of 
around 2.7 $, the savings in the energy bill was practically zero. For all 
consumers, energy consumption expenditures are reduced by 34.908 $ 
with the consequent improvement in LF with a value greater than triple 
by 0.2161. Therefore, the proposed tool, besides guaranteeing an effi-
cient scheme at a minimum cost, also increases the reliability of the 
supply service. 

4.3. Sensitivity analysis of μ’, μ’’, and μ’’’ 

In this subsection an analysis of the values of the weights μ’, μ’’, and 
μ’’’ related to the objective function (1) of the proposed MIPQC model is 
done for case study 2, since it has the largest number of customers with 
different family income. As mentioned before, weights μ’, μ’’, and μ’’’ are 
associated with cost functions Ω1, Ω2, and Ω3 related to customers’ 
energy bills, coincident usage of appliances with higher average power 
and financial gains from ECO, respectively. 

Table 7 reports the combination of values 10− 1 (0.1), 10◦ (1), and 
101 (10) to be considered for each weight μ’, μ’’, and μ’’’. Thus, for each 
combination, a given value of the objective function is obtained. Taking 
into account the organization of the values of the objective function, e. 

g., from the lowest value of 15.542 to the highest value of 1556.44, the 
combinations are ordered from 1 to 9 in this table. In addition, the two 
columns on the right side of Table 7 show, for each combination, the LF 
values as well as the costs per energy consumption of all customers. 
Fig. 15 depicts the graph related to all combinations attributed to μ’, μ’’, 
and μ’’’. Also, in Table 7, combination 7 corresponds to the values of the 
weights used in the case studies analyzed above. This combination has 
an LF value and total costs equal to 0.7238 and 74.802 $, respectively. 
Similar values of the LF and total costs can be seen in combinations 1, 4, 
8, and 9. Note that, for each of the combinations 1, 4, and 9 all weights 
are equal, i.e., for combination 1 all weights are equal to 10− 1, for 
combination 4 are equal to 10◦, and for combination 9 are equal to 101. 
In combination 8, all weights are different, with the largest weight 
attributed to the Ω2 cost function, related to the coincident use of higher 
power appliances. These combinations demonstrate other alternative 
values that can be used in the analysis of the case studies. On the other 
hand, the weight values related to combinations 2, 5, and 6 are not very 
attractive when the objective is to increase the LF only. However, these 
combinations show the biggest reduction in customers’ energy con-
sumption expenses. Combination 5 shows the maximum cost reduction, 
68.863 $, but the low LF of 0.5892 can compromise the ECO’s operating 

Fig. 13. Consumption profile and LF values for the 12 customers.  

Fig. 14. Daily expenses for the 12 customers.  

Table 6 
Expenses related to the habitual and optimal consumption profile of the 12 
customers.  

Type of 
Preferences Customers 

Habitual Profile Optimal Profile 

Expenses 
($) 

Load 
Factor 

Expenses 
($) 

Load 
Factor 

1 1 16.386 0.2100 10.774 0.4268 
2 2 2.763 0.2121 2.753 0.2121 
3 3 15.118 0.2707 10.056 0.3082 
4 4 7.109 0.1074 4.049 0.1710 
4 5 7.001 0.1055 3.985 0.1678 
3 6 14.894 0.2642 9.578 0.3586 
2 7 2.539 0.2327 2.283 0.2364 
2 8 2.614 0.2016 2.530 0.1370 
1 9 16.386 0.2100 11.193 0.4580 
2 10 2.763 0.2121 2.753 0.2263 
3 11 15.118 0.2707 10.711 0.3406 
4 12 7.109 0.1074 4.227 0.1710 
– Total 109.8 0.2161 74.892 0.7238  

Table 7 
Weight values.  

Order 
Nº 

Weights Obj. Function 
Values 

Total 
Costs ($) 

Load Factor 
Values μ’  μ’’  μ’’’  

1 10− 1 10− 1 10− 1 15.542 74.003 0.7238 
2 10◦ 10− 1 101 80.741 70.040 0.6194 
3 10− 1 10◦ 101 92.989 75.559 0.7451 
4 10◦ 10◦ 10◦ 155.407 74.349 0.7324 
5 101 10− 1 10◦ 700.027 68.863 0.5892 
6 101 10◦ 10− 1 790.613 69.285 0.6094 
7* 10− 1 101 10◦ 800.729 74.919 0.7238 
8 10◦ 101 10− 1 814.815 74.802 0.7268 
9 101 101 101 1556.44 74.135 0.7281  

Fig. 15. Values of the objective function related to the weights μ’, μ’’, and μ’’’.  
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costs. Unlike this combination, combination 7 turns out to be advanta-
geous when it comes to reducing energy waste due to the high LF value, 
0.7451. However, this same combination shows a higher cost per con-
sumption of 75.559 $ compared to combination 5, resulting financially 
unfavorable for consumers. On the user’s side, combination 5 would be 
the most appropriate financially. While on the ECO’s side, the most 
economically appropriate alternative is combination 3. Therefore, based 
on the combinations presented in Table 7, our criterion adopted in the 
choice of weights related to combination 7 aims to meet the financial 
and operational aspects of both customers and the ECO. 

5. Conclusions 

In this paper, a MILP model has been proposed to mitigate the 
occurrence of new demand peaks during periods with lower energy 
prices. This mitigation was achieved by improving the LF related to the 
consumption profile of a group of domestic customers. In this work, the 
LF value has been improved by avoiding the coincident consumption of 
smart home appliances, mainly of the smart appliances with higher 
average power, taking into account flexibility in consumers’ hourly 
preferences. In the proposed model, the economic expenditures related 
to customers and ECO are minimized, while the technical and opera-
tional constraints of home appliances, including the battery charging of 
the PEV, are being considered. Uncertainties in customers’ habitual 
consumption patterns are modeled using an MCM. The results shown in 
the case studies reveal the potential of the proposed tool in reducing the 
monthly bill of customers through the efficient management of smart 
home appliances, as well as the efficient usage of energy in the elec-
tricity distribution network. Consequently, financial impacts will be 
perceived by ECO in the long term. Among them is the postponement of 
investments in maintenance or installation of new distribution trans-
formers, feeders, protection devices, etc., due to efficient demand 
management. 

Although the proposed model has shown its effectiveness in reducing 
expenses for both customers and ECOs, limitations must still be over-
come in order to obtain a more realistic model. To overcome the limi-
tations present in the current stage of the proposed model, the following 
factors should be considered: i) inclusion of operational constraints that 
guarantee the logical sequence in the household appliances usage, as in 
the case of using the clothes dryer after using the washing machine, 
among others; ii) the operational regime of thermal loads, in view of the 
effect of temperature variation inside and outside the house; iii) the 
kilometers traveled by EVs as an influential factor in the time when 
battery charging starts, which can impact the domestic consumption 
profile; iv) the insertion of either generation or storage sources, indi-
vidual or shared, that will allow to meet the peaks of demand, reducing 
the electric grid stresses, as well as the uncertainties related to the 
intermittent energy generation and the price scheme for the sale. Based 
on these limitations, different approaches can be considered in future 
works, among them:  

1 Investigate how the levels of thermal and electrical comfort in homes 
impact the formation of a more economical consumption profile once 
the number of appliances is considered to be variable and dependent 
on the domestic income of each consumer;  

2 Address the improvement of the LF when demand response programs 
based on incentives and prices are adopted within the community;  

3 Consider the variation of the LF due to the presence of shared 
intermittent generation and how the new peaks in demand are 
mitigated for a time horizon of one week. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Aduda, K. O., Labeodan, T., Zeiler, W., & Boxem, G. (2017). Demand side flexibility 
coordination in office buildings: A framework and case study application. Sustainable 
Cities and Society, 29, 139–158. 

Ahmed, N., Levorato, M., & Li, G. P. (2018). Residential consumer-centric demand side 
management. IEEE Transactions on Smart Grid, 9(5), 4513–4524. 

Ali, S. B. M., Hasanuzzaman, M., & Rahim, N. A. (2018). Investigation on the load factor 
performance at wisma R&D University Malaya building. 5th IET International 
Conference on Clean Energy and Technology (CEAT2018), 1–6. 

Al-Mousa, A., & Faza, A. (2019). A fuzzy-based customer response prediction model for a 
day-ahead dynamic pricing system. Sustainable Cities and Society, 44, 265–274. 

Alquthami, T., & Meliopoulos, P. S. (2018). Smart house management and control 
without customer inconvenience. IEEE Transactions on Smart Grid, 9(4), 2553–2562. 

ANEEL. (2016). Normative resolution 733, 6 September 2016. National Agency of 
Electrical Energy http://www2.aneel.gov.br/cedoc/ren2016733.pdf. 

Anvari-Moghaddam, A., Monsef, H., & Rahimi-Kian, A. (2016). Optimal smart home 
energy management considering energy saving and a comfortable lifestyle. IEEE 
Power and Energy Society General Meeting (PESGM), 1. 

Anzar, M., Iqra, R., Kousar, A., Ejaz, S., Alvarez-Alvarado, M. S., & Zafar, A. K. (2018). 
Optimization of home energy management system in smart grid for effective demand 
side management. International Renewable and Sustainable Energy Conference (IRSEC), 
1–6. 

Basit, A., Sidhu, G. A. S., Mahmood, A., & Gao, F. (2017). Efficient and autonomous 
energy management techniques for the future smart homes. IEEE Transactions on 
Smart Grid, 8(2), 917–926. 

Bem Dhaou, I. (2019). Smart plug design for demand side management program. 19th 
International Conference on Power Electronics and Their Applications (ICPEA), 1–5. 

Borges, M. C. O., Franco, J. F., & Rider, M. J. (2014). Optimal reconfiguration of 
electrical distribution systems using mathematical programming. Journal of Control 
Automation and Electrical Systems, 25, 103–111. 

Cerna, F. V., Pourakbari-Kasmaei, M., & Gallego, L. A. (2018). Evaluation of the 
performance of HEV technologies using a MILP model to minimize pollutant 
emissions. IEEE International Conference on Industry Applications (INDUSCON), 
446–452. 

Cerna, F. V., Pourakbari-Kasmaei, M., Romero, R. A., & Rider, M. J. (2018). Optimal 
delivery scheduling and charging of EVs in the navigation of a city map. IEEE 
Transactions on Smart Grid, 9(5), 4815–4827. 

Chakraborty, N., Mondal, A., & Mondal, S. (2020). Efficient load control based demand 
side management schemes towards a smart energy grid system. Sustainable Cities and 
Society, 59. Article 102175. 

Chiu, W. Y., Hsieh, J. T., & Chen, C. M. (2020). Pareto optimal demand response based on 
energy costs and load factor in smart grid. IEEE Transactions on Industrial Informatics, 
16(3), 1811–1822. 

Christopher, O. A., & Wang, L. (2014). Autonomous appliance scheduling for household 
energy management. IEEE Transactions on Smart Grid, 5(2), 673–682. 

Chupong, C., & Plangklang, B. (2017). Electricity bill forecasting application by home 
energy monitoring system. International Electrical Engineering Congress (iEECON), 
1–4. 

Croce, D., Giuliano, F., Tinnirello, I., Galatioto, A., Bonomolo, M., Beccali, M., et al. 
(2017). Overgrid: A fully distributed demand response architecture based on overlay 
networks. IEEE Transactions on Automation Science and Engeneering, 14(2), 471–481. 

DEA Technical Note 14/10. (2010). Evaluation of energy efficiency in industry and 
residences in the decennial horizon (2010 - 2019). https://www.epe.gov.br/sites-pt/ 
publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao- 
245/topico-270/20100809_4[1].pdf. 

Di Santo, K. G., Kanashiro, E., Di Santo, S. G., & Saidel, M. A. (2015). A review on smart 
grids and experiences in Brazil. Renewable and Sustainable Energy Reviews, 54, 
1072–1082. 

Ekanayake, J., Liyanage, K., Wu, J., Yokoyama, A., & Jenkins, N. (2012). Smart grid 
technology and applications. UK: John Wiley&Sons.  

Fardan, A. S. A., Gahtani, K. S. A., & Asif, M. (2017). Demand side management solution 
through new tariff structure to minimize excessive load growth and improve system 
load factor by improving commercial building energy performance in Saudi Arabia. 
IEEE International Conference on Smart Energy Grid Engineering (SEGE), 320. -308. 

Farham, H., Mohammadian, L., Alipour, H., & Pouladi, J. (2019). Energy procurement of 
large industrial consumer via interval optimization approach considering peak 
demand management. Sustainable Cities and Society, 46. Article 101421. 

Farrokhifar, M., Momayyezi, F., Sadoogi, N., & Safari, A. (2018). Real-time based 
approach for intelligent building energy management using dynamic price policies. 
Sustainable Cities and Society, 37, 85–92. 

Fourer, R., Gay, D. M., & Kernighan, B. W. (2003). AMPL: A modeling language for 
mathematical programming’ (2nd ed). Pacific Grove: Brooks/Cole-Thomson Learning.  

Ghorashi, S. M., Rastegar, M., Senemmar, S., & Seifi, A. R. (2020). Optimal design of 
reward-penalty demand response programs in smart power grids. Sustainable Cities 
and Society, 60. Article 102150. 

Gonçalves, R. R., Alves, R. P., Franco, J. F., & Rider, M. J. (2013). Operation planning of 
electrical distribution systems using a mixed integer linear model. Journal of Control 
Automation and Electrical Systems, 24, 668–679. 

Heo, S., Park, W. K., & Lee, I. (2017). Energy management based on communication of 
smart plugs and inverter for smart home systems. International Conference on 
Information and Communication Technology Convergence (ICTC), 810–812. 

Hosseinnia, H., Nazarpour, D., & Talavat, V. (2018). Benefit maximization of demand 
side management operator (DSMO) and private investor in a distribution network. 
Sustainable Cities and Society, 40, 625–637. 

F.V. Cerna and J. Contreras                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0005
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0005
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0005
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0010
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0010
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0015
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0015
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0015
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0020
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0020
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0025
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0025
http://www2.aneel.gov.br/cedoc/ren2016733.pdf
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0035
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0035
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0035
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0040
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0040
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0040
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0040
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0045
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0045
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0045
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0050
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0050
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0055
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0055
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0055
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0060
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0060
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0060
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0060
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0065
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0065
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0065
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0070
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0070
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0070
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0075
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0075
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0075
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0080
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0080
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0085
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0085
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0085
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0090
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0090
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0090
https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-245/topico-270/20100809_4[1].pdf
https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-245/topico-270/20100809_4[1].pdf
https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-245/topico-270/20100809_4[1].pdf
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0100
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0100
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0100
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0105
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0105
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0110
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0110
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0110
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0110
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0115
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0115
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0115
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0120
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0120
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0120
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0125
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0125
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0130
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0130
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0130
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0135
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0135
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0135
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0140
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0140
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0140
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0145
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0145
http://refhub.elsevier.com/S2210-6707(21)00255-9/sbref0145


Sustainable Cities and Society 71 (2021) 102969

16

Hussain, M., & Gao, Y. (2018). A Review of demand response in an efficient smart grid 
environment. The Electricity Journal, 84(5), 55–63. 

IBGE – Brazilian Institute of Geography and Statistics. (2019). Family budget survey. https 
://biblioteca.ibge.gov.br/visualizacao/livros/liv101670.pdf. 

IBM ILOG CPLEX V 12. 1. (2009). User’s manual for CPLEX. Incline Village, NV, USA: 
CPLEX Division, ILOG Inc.  

Keerthisinghe, C., Verbic, G., & Chapman, A. C. (2018). A fast technique for smart home 
management: ADP with temporal difference learning. IEEE Transactions on Smart 
Grid, 9(4), 3291–3303. 

Khalid, A., Javaid, N., Guizani, M., Alhussein, M., Aurangzeb, K., & Ilahi, M. (2018). 
Towards dynamic coordination among home appliances using multi-objective 
energy optimization for demand side management in smart buildings. IEEE Access : 
Practical Innovations, Open Solutions, 6, 19509–19529. 

Ma, K., Yu, Y., Yang, B., & Yang, J. (2019). Demand-side energy management considering 
price oscillations for residential building heating and ventilation systems. IEEE 
Transactions on Industrial Informatics, 15(8), 4742–4752. 

Marah, R., & Hibaoui, A. E. (2018). Algorithms for smart grid management. Sustainable 
Cities and Society, 38, 627–635. 

Nuchprayoon, S. (2016). Calculation and allocation of load losses in distribution system 
using load research data and load factor method. 6th IEEE International Conference on 
Control System, Computing and Engineering (ICCSCE), 85–90. 

Obushevs, A., Oleinikova, I., & Mutule, A. (2016). Demand side management plataform 
for HAN flexibility estimation with agent control. 13th International Conference on the 
European Energy Market (EEM), 1–5. 

Ponce-Jara, M. A., Ruiz, E., Gil, R., Sancristóbal, E., Pérez-Molina, C., & Castro, M. 
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