
Vol.:(0123456789)

Int. J. Appl. Comput. Math            (2020) 6:16 
https://doi.org/10.1007/s40819-019-0765-1

1 3

ORIGINAL PAPER

Non‑similar Solution of Eyring–Powell Fluid Flow and Heat 
Transfer with Convective Boundary Condition: Homotopy 
Analysis Method

Atul Kumar Ray1 · B. Vasu1  · P. V. S. N. Murthy2 · Rama S. R. Gorla3

 
© Springer Nature India Private Limited 2020

Abstract
The study presents the mixed convective boundary layer flow of Eyring–Powell fluid over a 
vertical plate with variable velocity and temperature distribution taking convective bound-
ary condition into account. The transformed non-dimensional governing equations in non-
similar nature are solved by employing hybrid technique: local non-similarity method in 
conjunction with homotopy analysis method. The convergence of homotopy series solution 
is obtained and presented for various order of approximations. The series solutions have 
been validated by comparing the results available in the literature and found good agree-
ment. The obtained results are shown properly by graphs and discussed for various values 
of thermo-physical parameters. It is found that the Eyring–Powell fluid shows higher veloc-
ity than Newtonian fluid whereas lower temperature than Newtonian fluid. Furthermore as 
increase in fluid parameter, ratio of relaxation and retardation parameter, skin friction coef-
ficient decreased and heat transfer coefficient increased. The study finds wide applications 
in the field of design of heat exchangers, process of cooling of metallic plate, extrusion of 
plastic sheets, in polymer and glass industries etc.
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List of Symbols
A  Cauchy stress tensor (N/m2)
A1  Kinematical tensor (N/m2)
Cf   Local skin friction coefficient
Cp  Specific heat at constant pressure (J/kg K)
c  Fluid parameter  (s−1)
De  Deborah number
f   Non-dimensional stream function velocity
f0  Initial guess for non-dimensional velocity
g  Gravitational acceleration (m/s2)
Gr  Grashof number
n  Power index
Nu  Local Nusselt number
P  Pressure (Pa or N/m2)
p  Embedded parameter
I  Identity vector
Pr  Prandtl number
Re  Reynolds number
T   Fluid temperature (K)
V   Velocity vector (m/s)
u, v  Dimensional velocity components (m/s)
x, y  Cartesian coordinates

Greek Symbols
�  Thermal diffusivity  (m2/s)
�  Fluid parameter
�  Biot number
�̇�  Shear rate  (s−1)
�  Extra stress tensor (Pa or N/m2)
�w  Shear stress (Pa or N/m2)
qw  Rate of heat transfer (W/m2)
�  Dynamitic viscosity (Pa s)
�  Kinematic viscosity of the fluid  (m2/s)
�  Dimensionless temperature
�  Stream function  (m2/s)
�  Mixed convection parameter
�  Non-similarity variables
�  Density of fluid (kg/m3)
ℏi  Control parameter for f  , g and h
Li  Auxiliary linear operator
Ni  Auxiliary non-linear operator

Subscripts
w  Wall condition
∞  Ambient condition

Superscripts
′  Prime denotes the derivative with respect to η
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Introduction

The flow and heat transfer [1] due to the continuous stretching plate are important because 
of their large number of applications in engineering such as the design of heat exchang-
ers, strand casting, the liquid film condensation process, wire drawing, extrusion of plastic 
sheets and in the polymer and glass industries etc. Sakiadis [2] has studied and formed 
the solution numerically for the flow of a stretching surface. The problem of Sakiadis has 
been continued by Erickson et  al. [3] with effect of suction/blowing at the moving sur-
face for heat and mass transfer with in boundary layer regime. Karwe and Jaluria [4] have 
explained the importance of mixed convection flow over continuous moving plate for 
manufacturing process. Vajravelu and Roper [5] explained the influence of heat generation/
absorption and viscous dissipation along with non-linear surface temperature on the flow 
of non-Newtonian fluid over stretching surface. Magyari et al. [6] have used the self-similar 
method to yield the solutions for the continuous surface stretched with decelerating veloci-
ties. Further, Patilet al. [7] investigated the unsteady mixed convection flows along power 
law stretching sheet with variable temperature distribution. Mustafa et al. [8] analyzes the 
influence of free convection on flow of a non-Newtonian fluid past a continuously stretch-
ing surface. The flow and heat transfer for a nanofluid over an unsteady stretching plate is 
studied extensively by Ahmadi et al. [9]. Rao et al. [10] have described the influence of slip 
condition on the flow of a Casson fluid flow over stretching surface.

The dynamical study of non-Newtonian fluids yields challenge to researchers and sci-
entists. Many industrial fluid (gas–liquid dispersions, coal in water, sewage sludge, foams), 
biological fluids (blood, salvia, synovial fluid), foodstuffs (soups, jams, jellies), synthetic 
lubricants, such as cosmetics, toiletries, paints and their flow behaviours are non-linear 
in nature. The constitutive relations for such fluids lead to higher order and highly com-
plex equations. So, different models of non-Newtonian fluid [11–13] have been devel-
oped to deal with such complexity. One of such complex non-Newtonian fluid model is 
Eyring–Powell fluid model which is capable to describe relaxation theory of viscosity. The 
Eyring–Powell model [14] has some advantages over the other non-Newtonian fluid mod-
els. Instead of empirical relation, the Eyring–Powell fluid model is deduced from kinetic 
theory of liquid. As per kinetic theory of liquid, bond of the liquid molecules can be either 
weak or strong. Weaker molecular bond corresponds to the Newtonian relation and strong 
molecular bond corresponds to the non-Newtonian relation in Eyring–Powell fluid model. 
So, Eyring–Powell fluid has ability to give Newtonian plateau at low and/or high shear 
rate, that is, it can overcome the difficulties of power law fluid [15] and Spriggs fluid model 
[16]. The impact of convective boundary surface on the flow of Eyring–Powell fluid is 
examined by Hayat et al. [17]. Unsteady flow of Eyring–Powell fluid in presence of mag-
netic field and thermal radiation is analysed by Ghadikolaei et al. [18]. The influence of 
homogeneous-heterogeneous reaction on the flow of Eyring–Powell fluid over rotating disc 
is investigated by Gholinia et al. [19].

Now a day, studies on boundary layer problem with convective boundary condition have 
attracted researchers due to its importance in technological and industrial fields to adjust ther-
mal effects industrial outputs such as in computer power supply, electronic devices and engine 
cooling system. The concept of convective boundary condition was initiated by Aziz [20]. 
Bataller [21] has extended this problem with thermal radiation by considering the Blasius and 
Sakiadis flows. Khan and Gorla [22] investigated the impact of convective boundary on the 
flow of non-Newtonian nanofluids over a sheet. Murthy et al. [23] analysed the natural con-
vection flow from a vertical non-Darcy porous plate with convective boundary condition. Ram 
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Reddy et al. [24] discussed the Soret effect on mixed convection flow of nanofluid past a verti-
cal plate with convective boundary conditions. Kameswaran et al. [25] investigated the influ-
ence of convective boundary condition and radiation on the flow of nanofluid past a permeable 
flat plate. Vasu et  al. [26] have provided the analysis of nonlinear temperature density and 
entropy generation in Newtonian fluid flow over a porous plate with convective surface.

The non-similarity flow problems are more general in real life, and hence retain wider 
importance than the similarity flows. The local similarity method [27] is used to deal with 
non-similar boundary layer flow problems. But the local-similarity method has some lim-
itations that the results found are of unreliable verity due to the removal of streamwise 
derivatives and there is no positive way to validate the impact of these removals on the 
final results. The method of local non-similarity was unfolded by Sparrow and Yu [28]. 
Rao et  al. [8] analysed the effect of mixed convection heat transfer on boundary layer 
flow of Casson fluid past a stretching surface by employing non-similar transformation. 
Mushtaq et al. [29] employed different methodologies namely, finite difference, perturba-
tion and local non-similarity method to explore the influence of mixed convection flow of 
non-Newtonian fluid past a continuous stretching surface. Vasu and Ray [30] have provided 
the local non-similar solution in conjunction with the homotopy analysis method to the 
flow of Carrareu nanofluid over a plate with Cattaneo–Christov heat flux model.

It may be noticed that past survey did not receive the influence of convective boundary 
condition on non-similar solution of mixed convection flow of Eyring–Powell fluid past a 
vertical plate. Here the free fall of a flat (vertical) plate inside an Eyring–Powell fluid is 
considered. Hence, the scope of the current article is to obtain local non-similar solution 
to the mixed convection flow of Eyring–Powell fluid over vertical plate with condition of 
convective boundary and variable surface temperature. Further, present study shows the 
computational aspects of first and second level of truncation of non-similarity methods. An 
analytical method namely the homotopy analysis method (HAM) [31–34], is applied nicely 
to obtain the series solution of the problem. Variation of velocity and temperature for dif-
ferent Prandtl number, mixed convection parameter and fluid parameter is shown graphi-
cally. Coefficient of skin friction is reduced with rise in Prandtl number and Local Nusselt 
number is increased with Prandtl number.

Mathematical Formulation

We considered steady two-dimensional mixed convection flow of Eyring–Powell fluid 
along a vertical stretched flat plate with convective boundary condition. It is assumed that 
the body force is absent in momentum equation and viscous dissipation is neglected in 
the energy equation. Here x-axis is parallel to the plate while y-axis is perpendicular to 
x-axis. u and v are the velocity component in the direction of x and y respectively. The 
schematic diagram of the problem is shown in Fig. 1 and includes full details of model and 
assumption.

For Eyring–Powell fluid [17], the Cauchy stress tensor can be written as

whereas pressure P and identity I appears in (1). � is extra stress tensor and is given by

(1)A = −PI + �

(2)𝜏 =

(
𝜇 +

1

𝛿�̇�
sinh

−1
(
1

c
�̇�

))
A1
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where � and c are the parameters of fluid, � is the dynamic viscosity and c having (time)−1 
dimension. sinh−1

(
1

c
�̇�

)
 is expressed as

Therefore from (2),

Here value of �̇� =

√
1

2
trA2

1
 and A1 is kinematical tensor and given as A1 = ∇V + (∇V)T , 

with V  as velocity vector.
Under the assumption of flow condition and using boundary layer approximation, con-

servation equations that govern the flow [29] are:

And conditions at boundary are

The flow is caused by continuous stretching of plate and the buoyancy effect. Also, 
the plate is under convective boundary condition (Eq.  (7)) and free stream velocity is 
zero (Eq. (8)). Equations (4)–(8) will undergo the non-similar transformation for getting 
non-similar solution. Non-similarity transformation converts the physical coordinates x , 

sinh
−1

(
1

c
�̇�

)
≅

1

c
�̇� −

1

6

(
1

c
�̇�

)3

with

(
�̇�

c

)5

<<< 1

(3)𝜏 =
(
𝜇 +

1

𝛿c

)
A1 −

1

6𝛿c3
(�̇�)2A1

(4)
�u

�x
+

�v

�y
= 0

(5)u
�u

�x
+ v

�u

�y
=

(
� +

1

�c�

)
�2u

�y2
−

1

2��c3

(
�u

�y

)2
�2u

�y2
+ g�(T − T∞)

(6)u
�T

�x
+ v

�T

�y
= �

�2T

�y2

(7)At y = 0, u = U(x), v = 0, −k
�T

�y
= h(Tw − T)

(8)y → ∞, u = 0, T = T∞

Fig. 1  Schematic Diagram of the 
problem
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y into the new coordinates �, � . � is known as pseudo-similarity variables and contains 
both physical coordinates x and y where � is function of x only. Let � is stream function 
and non-similarity and dimensionless variables as,

where Rex =
Ux

�
 and Grx =

g�ΔTx3

�2
 are Reynolds number and Grashof number respectively. 

Forced convection dominates the flow field for small value of mixed convection parameter 
� and buoyancy forces dominate the flow field for large value of �.

� is stream function for which u =
��

�y
, v = −

��

�x
 . Continuity equation is satisfied auto-

matically. Here we considered the following form of velocity and temperature of the 
surface:

The transformed boundary layer non-dimensional momentum and energy equations are

conditions at boundary becomes,

where

� is Biot number and material fluid parameters are represented by � and � , prime appears in 
the Eqs. (10)–(12) denotes derivative with respect to � , Pr is Prandtl number. The local skin 
friction coefficient cf  and Nusselt number Nu are also calculated by using following equa-
tions for practical applications

and

where

(9)� = �Re1∕2f (�, �), � =
y

x
Re

1∕2
, � =

Grx

Re
2

x

U(x) = U0x and ΔT(x) = T0x
2

(10)(1 + �)f ��� + ff �� −
(
f �
)2

− ��f ���
(
f ��
)2

+ �� = �

(
f �
�f �

��
− f ��

�f

��

)

(11)
1

Pr
��� + f �� − 2�f � = �

(
f �
��

��
− ��

�f

��

)

(12)
f (0, �) = 0, f �(0, �) = 1, ��(0, �) = −�(1 − �(0, �))

f �(∞, �) = 0, �(∞, �) = 0

� =
1

��c�
, Pr =

�

�
, � =

hx

k(Re)1∕2
, and � =

�2(Re)3

2c2x4

(13)cf = �
2�w(x)

�(U(x))2

(14)Nu =
qw(x)x

kΔT
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And

Furthermore, after introducing transformation Eq.  (9) in Eq.  (15), from Eq.  (13), the 
dimensionless skin friction become

Similarly, the local Nusselt number from Eq. (14) can be expressed as

Non‑similarity Method

Similarity and non-similarity schemes are basically two different methods for finding the solu-
tion in boundary layer problems. The solution process of similarity method is easier. But in 
many physical problems, similarity solution do not exists. Like, the free and mixed convec-
tion flow over vertical plate is in general non-similar. So, when such problems do not pur-
sue the similarity solution. One had to solve such problems using non-similarity method. The 
non-similarity method has been use to solve complex problems by many researchers [35–39]. 
These methods are given in the text book of Minkowycz et al. [40].

First Level of Truncation (Local Similarity)

Local similarity method [27] is one of the frequently used non-similar methods. This method 
is computationally simple and admits non-similar solution to boundary layer problems. An 
interesting aspect of this method is that once the governing equations transformed, then those 
equations can be treated as ordinary differential equation by considering the non-similarity 
terms as small enough so that these term can be taken as zero. Also by means of local similar-
ity method, solution at any particular streamwise location can be obtained without any further 
calculations at upstream location. The method of local similarity has been implemented by 
many researches [41–43] For local similarity solution, the right hand side terms of Eqs. (10) 
and (11) containing �. �(.)

��
 are approximated as very smalland hence are deleted from Eqs. (10) 

and (11) which is possible when 𝜉 ≪ 1 . So the local similarity leads us to the following sys-
tem of equations:

�w =

[
�
�u

�y
+

1

�c

�u

�y
−

1

6�c3

(
�u

�y

)3
]

y=0

(15)qw = −k

(
�T

�y

)

y=0

(16)
1

2
Re

1∕2cf = (1 + �)f ��(0, �) −
��

3

(
f ��(0, �)

)3

(17)Re
−1∕2

Nu = −��(0, �)

(18)(1 + �)f ��� + ff �� −
(
f �
)2

− ��f ���
(
f ��
)2

+ �� = 0

(19)
1

Pr
��� + f �� − 2�f � = 0
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It can be seen that equations Eqs. (18)–(20) are system of ordinary differential equations 
for f  and � where � treat as parameter.

Local Non‑similarity Method

The solutions obtained by local-similarity method are of uncertain accuracy which is its 
major limitation. It is obvious that the final result will be affect due to the removal of 
streamwise derivatives. Thus these non-similarity terms must be considered to improve 
the verity of the solution. Sparrow et  al. [28, 44, 45] introduced the method of local 
non-similarity method. Massoudi [45] applied local non-similarity method to flows of 
non-Newtonian fluid over a wedge. Mureithi and Mason [46] analysed the mixed con-
vection flow over the plate with variable free-stream velocity and temperature at the 
wall. The effect of viscous dissipation is also taken into account.

The non-similarity bearing of the Eqs. (10)–(12) are demonstrated in the terms con-
taining �f

��
 and ��

��
 , So, to find the second level of truncation and to eliminate the presence 

of the terms �f
��

 and ��
��

 , we introduce the following functions:

Equations (10)–(12) reduces to:

Supplementary equations for g and � its boundary conditions can be obtain by differentiat-
ing equations Eqs. (21)–(23) w.r.t η. This yield

At second level, the terms containing derivative of g and � with respect to � and their 
higher order terms are deleted. The non-similar solution of system of ordinary differen-
tial equations Eqs. (21) and (22) and Eqs. (24) and (25), along with boundary conditions 
Eqs. (23) and (26) are solved via HAM.

(20)
f (0, �) = 0, f �(0, �) = 1, ��(0, �) = −�(1 − �(0, �)), f �(∞, �) = 0, �(∞, �) = 0

g(�, �) =
�f

��
, �(�, �) =

��

��

(21)(1 + �)f ��� + ff �� −
(
f �
)2

− ��f ���
(
f ��
)2

+ �� = �
(
f �g� − f ��g

)

(22)
1

Pr
��� + f �� − 2�f � = �

(
f �� − ��g

)

(23)
f (0, �) = 0, f �(0, �) = 1, ��(0, �) = −�(1 − �(0, �)), f �(∞, �) = 0, �(∞, �) = 0

(24)
(1 + �)g��� + fg� + 2f ��g − 3f �g� − ��(g���

(
f ��
)2

+ 2f ���f ��g��) + � + �� = �

((
g�
)2

− g��g
)

(25)
1

Pr
��� + 2g�� + f�� − 3�f � − 2�g� = �

(
g�� − ��g

)

(26)g(0, �) = 0, g�(0, �) = 0, ��(0, �) = ��(0, �), g�(∞, �) = 0, �(∞, �) = 0
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Solution by HAM

Analytic solutions to the governing equation obtain from classical hydrodynamics prob-
lems like boundary layers flow over a flat plate are difficult to obtain. There are several 
attempts have been used to solve such governing equations using analytic methods. Appli-
cations of analytic methods like variational iteration and homotopy-perturbation method 
is elaborated by Ganji et  al. [47] for solving non-linear heat diffusion and heat transfer 
equations. These methods depend on small/large physical parameters which raise diffi-
culties in solving the complex hydrodynamic problems. The homotopy analysis method 
(HAM) developed by Liao [30, 48] is a semi analytic method which does not depend on 
any parameter since it is based on the homotopy, a topological concept. The HAM is admi-
rably used to solve many non-linear problems based on real life problems such as the non-
homogeneous Blasius problem [49], the nano boundary layer flows [50], MHD Newtonian 
flow in a semi-porous channel [51] and the flows over a porous wedge [52]. Recently, Has-
san and Rashidi [53] employed HAM to show effect of Reynolds number on micropolar 
flow in porous channel by considering the mass injection into account. Dinarvand et  al. 
[54] used HAM to investigate the heat transfer flow of water based nanofluid past a circular 
cylinder. Vasu et al. [55] implemented HAM to solve a partial differential equation arising 
from the flow of Spriggs fluid past oscillatory moving plate. Ray et al. [56] studied elec-
trically-conducting Casson nanofluid bioconvection thin film transport phenomena from 
a time-dependent stretching sheet using HAM. These applications explain the fine ability 
of HAM for solving strong non-linear problems. In previous section, the analytic solution 
for velocity and temperature field has been obtained. They found that the copper–water 
nanofluid enhance more heat transfer rate when compared with titania-water nanofluid and 
alumina-water nanofluid.

In this section, system of equations Eqs.  (21)–(23) together with auxiliary system of 
equations Eqs. (24)–(26) are solved by employing HAM with appropriate initial guess f0 
and �0 are given as:

And linear operators are chosen as

satisfying the properties

Here, Am ’s ( m = 1 to 3) and Bk ’s ( k = 1 , 2) are arbitrary constants. Considering known 
parameter p ∈ [0, 1] as embedding parameter, h1 and h2 , as non-zero convergence control 
parameters, then we can construct the zeroth-order deformation equations as

subject to following boundary conditions

(27)f0 = 1 − e−�

(28)�0 =
�

� + 1
e−�

(29)L1(f ) = f ��� − f �, L2(�) = ��� − �

(30)L1(A1 + A2e
� + A3e

−�) = 0, L2(B1e
� + B2e

−�) = 0

(31)(1 − p)L1[f (�, �;p) − f0(�, �)] = ph1N1[(f (�, �;p), �(�, �;p))]

(32)(1 − p)L2[�(�, �;p) − �0(�, �)] = ph2N2[(f (�, �;p), �(�, �;p))]
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The nonlinear operators is chosen as

For p = 0 , we have

and for p = 1 , we get

thus, as p changes from 0 to 1, value of f (�, �;p) deforms f0(�, �) f (�, �) and similarly 
�(�, �;p) deforms from �0(�, �) to �(�, �).

Further, f (�, �;p) and �(�, �;p) are expanded using Taylor’s series with respect to p,

where

By setting suitable initial guess, auxiliary linear operators and convergence control param-
eters the series Eqs.  (38) and (39) are converges at p = 1 , hence the series solution are 
obtained as follows:

(33)
f (0, �;p) = 0, f �(0, �;p) = 1, and f �(∞, �;p) = 0

��(0, �;p) = −�(1 − �(0, �;p)), �(∞, �;p) = 0

(34)

N1(f (�, �;p), �(�, �;p)) = (1 + �)
�3f (�, �;p)

��3
+ f (�;p)

�2f (�, �;p)

��2
−

(
�f (�, �;p)

��

)2

− ��
�3f (�, �;p)

��3

(
�2f (�, �;p)

��2

)2

− �

(
�f (�, �;p)

��

�f �(�, �;p)

��
−

�f 2(�, �;p)

��2

�f (�, �;p)

��

)

(35)

N2(f (�, �;p), �(�, �;p)) =
1

Pr

�2�(�;p)

��2
+ f (�, �;p)

��(�, �;p)

��
− 2�(�, �;p)

�f (�, �;p)

��

− �

(
�f (�, �;p)

��

��(�, �;p)

��
−

��(�, �;p)

��

�f (�, �;p)

��

)

(36)f (�, �;0) = f0(�, �), �(�, �;0) = �0(�, �)

(37)f (�, �;1) = f (�, �), �(�, �;1) = �(�, �)

(38)f (�, �;p) = f0(�, �) +

∞∑

r=1

fr(�, �)p
r

(39)�(�, �;p) = �0(�, �) +

∞∑

r=1

�r(�, �)p
r

(40)
fr(�, �) =

1

r!

�rf (�, �;p)

�pr
|p=0

�r(�, �) =
1

r!

�r�(�, �;p)

�pr
|p=0
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Now, rth-order deformation equations can be found by differentiating Eqs. (31)–(33) r times 
with respect to p , taking p = 0 and then divide by r! , thus Eqs. (31)–(33) changes to

with boundary conditions as

Here,

and

If f ∗r (�, �) and � ∗r (�, �) are special solutions of (43) and (44) satisfying boundary con-
dition (44).

Then

(41)f (�, �) = f0(�, �) +

∞∑

r=1

fr(�, �)

(42)�(�, �) = �0(�, �) +

∞∑

r=1

�r(�, �)

(43)L1[fr(�, �) − �∗
r
fr−1(�, �)] = h1R

f
r
(�, �)

(44)L2[�r(�, �) − �∗
r
�r−1(�, �)] = h2R

�
r
(�, �)

(45)
fr(0, �) = 0, f �

r
(0, �) = 0 and f �

r
(∞, �) = 0

��
r
(0, �) = ��r(0, �), �r(∞, �) = 0

(46)

Rf
r
(�, �) = (1 + �)f ���

r−1
(�) +

r−1∑

i=0

fr−1−i(�, �)f
��
i
(�, �) −

r−1∑

i=0

f �
r−1−i

(�, �)f �
i
(�, �)

− ��

r−1∑

i=0

f ���
r−1−i

(�, �)

i∑

j=0

f ��
i−j
(�, �)f ��

j
(�, �) + ��r−1(�, �)

− �

(
r−1∑

i=0

f �
r−1−i

(�, �)
�f �

i
(�, �)

��
−

r−1∑

i=0

f ��
r−1−i

(�, �)
�fi(�, �)

��

)

(47)

R�
r
(�, �) =

1

Pr
���
r−1

(�, �) − 2

r−1∑

i=0

�r−1−i(�, �)f
�
i
(�, �) +

r−1∑

i=0

fr−1−i(�, �)�
�
i
(�, �)

− �

r−1∑

i=0

(
f �
r−1−i

(�, �)
��i(�, �)

��
− ��

r−1−i
(�, �)

�fi(�, �)

��

)

(48)𝜒∗
r
=

{
0, r ≤ 1

1, r > 1

(49)fr(�, �) = f ∗r (�, �) + A1 + A2e
� + A3e

−�

(50)�r(�, �) = � ∗r (�, �) + B1e
� + B2e

−�
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where the values of constants Ai(i = 1, 2, 3) and Bj (j = 1, 2) can be gained by using  rth 
order deformation boundary condition in (49) and (50). These values are

Thus, the series solution (41) and (42) is obtained after substituting (49) in (41) and (50) in 
(42) respectively.

Convergence of HAM

The series solution of Eqs. (10) and (11) with boundary conditions in Eq. (12) depends on 
the convergence control parameter h1 and h2 which are responsible for controlling the con-
vergence of homotopy series solution as described by Liao [24]. Hence the range of these 
parameters obtained and depicts h-curve (Fig. 2). It is noted that the range of h1 and h2 , 
are −0.2 < h1 < 0.8 and −0.2 < h2 < 1.25 . Table 1 presents the convergence of homotopy 
solution for various order of approximation and it is found that  15th order of approximation 
is adequate to consider for computation.

A1 = −(f ∗r (0, �) + f ∗�
r
(0, �)), A2 = 0, A3 = f ∗�

r
(0, �)

B1 = 0, B2 =
�� ∗r (0, �) − �� ∗r (0, �)

1 + �

Fig. 2  h-curve

Table 1  Convergence of 
series solutions for Pr = 0.71 , 
� = � = 1 , � = 1 , � = 0.5 , 
h1 = h2 = −0.6

m (order of approximation) −f ��(0, 0) −��(0, 0)

5 − 0.75708 − 0.535309
10 − 0.76174 − 0.53572
15 − 0.76148 − 0.53569
20 − 0.76147 − 0.53569
25 − 0.76147 − 0.53569
30 − 0.76147 − 0.53569
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Result and Analysis

The governing Eqs. (4)-(6) with boundary conditions (7) and (8) are transformed to non-
dimensionalised form (10) and (11) with boundary conditions in (12) by using the non-
similarity transformation (9). The resultant non-dimensional partial differential Eqs.  (10) 
and (11) with boundary condition (12) are solved by employing non-similarity method in 
conjunction with HAM. Firstly, partial differential equations are transformed to ordinary 
differential Eqs.  (18) and (19) with boundary condition (20) using first level of trunca-
tion (local similarity method) and then approximated second level of truncation shown in 
(21), (22), (24) and (25) with respect to boundary conditions (23) and (26). Series solution 
of these systems of differential equations is given by HAM. The obtained results of the 
present problem for a particular case is compared with study of Hayat et al. [57] shown 
in Table 2 when Pr = 0.71 , � = 1, � = 0.2 , � = 0 . The present results are also compared 
with Mushtaq et al. [29] and Nataraja et al. [58] for different values of Prandtl number Pr 
in Table 3 when � = 0, � = 0 . From Tables 2 and 3, the comparison states that the current 
results are in excellent agreement.

Following fixed value of parameters are taken for computation:

� = 0.5, Pr = 0.71, � = 1, � = 0.6, � = 1, h1 = h2 = −0.6 for similarity solution (first 
level of truncation)
� = 0.5, Pr = 0.71, � = 1, � = 0.6, � = 1, h1 = h2 = −0.75 for second level of trunca-
tion.

Figure  3 compares the velocity profile obtained in first (local similarity) and second 
level (local non-similarity) of truncation for different Eyring–Powell fluid parameter � . 
Momentum boundary layer thickness is less in local non-similarity method as compare 
local similarity method. Velocity decays faster to zero for second level of truncation than 
first level of truncation and this behaviour is due to removal of streamwise differentials 

Table 2  Comparison of result 
with Hayat et al. [57] of 
approximations for Pr = 0.71 , 
� = 1, � = 0.2 , � = 0

m (order of 
approx.)

Hayat et al. [57] Present result

−f ��(0, 0) −��(0, 0) −f ��(0, 0) −��(0, 0)

5 0.214032 0.455456 0.2140317 0.453651
10 0.213592 0.454047 0.2135997 0.454063
15 0.213579 0.454109 0.213580 0.454126
20 0.213579 0.454123 0.213578 0.454126
25 0.213579 0.454127 0.213578 0.454126
30 0.213579 0.454127 0.213578 0.454126

Table 3  Comparison of present 
study with Nataraja et al. [58] 
and Mushtaq et al. [29] for 
different values of Prandtl 
number Pr by considering 
� = 0, � = 0

Pr ��(0)

Nataraja et al. [58] Mushtaq et al. [29] Present

1 1.3333 1.3349 1.33333
5 3.3165 3.2927 3.31651
10 4.7969 4.7742 4.78967
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in first level of truncation. Noted that � = 0.5 is taken in both local similar and local non-
similarity method only to compare the variations of velocity and temperature. Figure  4 
compares the temperature profile obtained in first and second level of truncation for dif-
ferent Eyring–Powell fluid parameter � . By using local non-similarity method, the thermal 
boundary layer thickness is decreased when compared to local similarity method. Further, 
it is also observed from the Figs. 3 and 4 that the velocity profile falls with increase in � . 
Because increasing value of � leads to decrease in viscosity which results in increase in 
velocity profile (Fig. 3). The impact of � on temperature profile displays in Fig. 4 concludes 
that temperature decreases with �.

Figures  5 and 6 illustrate the influence of Pr on velocity and temperature profile for 
Newtonian and Eyring–Powell fluid. It describes that the velocity is direct function of Pr 
and temperature profile is inverse function of Pr . Also, the comparison between Newto-
nian fluid and Eyring–Powell fluids for both velocity and temperature distributions are pre-
sented in Figs. 5 and 6. The comparison of Newtonian fluid and Eyring–Powell fluid shows 
that magnitude of velocity is greater in case of Eyring–Powell fluid. Flow of Eyring–Pow-
ell fluid enhanced the velocity and expresses its shear thinning behavior and suppresses the 
temperature field when compared with Newtonian fluid.

Figure  7 demonstrates the impact of Pr on temperature profile for (a) First level and 
(b) Second level of truncation. It is noticed that the temperature at the wall (at � = 0 ) is 
more when the system of equation solved by first level of truncation while it reduces when 
solved for second level of truncation. Also, Fig. 7 explains that temperature and thermal 
boundary layer thickness are decreased significantly for the larger values of Prandtl num-
ber. Lower temperature is noticed due to dominance of weaker thermal diffusivity over 
stronger momentum diffusivity. The same behaviour of Prandtl number is seen in Fig. 6.

Effect of convective boundary condition (i.e. Biot number � ) on temperature profile for 
Newtonian and Eyring–Powell fluid is shown in Fig. 8. Convective heating of the vertical 
plate is associated with Biot number � . Enlarging the values of Biot number � indicates 
higher internal thermal resistance of the vertical plate. As a result, an increase in the Biot 
number � leads to increase of fluid temperature efficiently. Figure 8 validates this physical 
fact also. For both Newtonian and Eyring–Powell fluid, the temperature is enhanced with 
increase in Biot number � . Further, it can also be seen that the temperature and thermal 
boundary layer thickness for Newtonian fluid is higher than the Eyring- Powell fluid which 
tells that the presence of Eyring–Powell fluid in the flow problem can effectively reduce the 
temperature.

Figures  9 and 10 deal with the variation of skin coefficient and local Nusselt num-
ber with respect to mixed convection parameter � for different Prandtl number. Friction 
at surface of the wall against the mixed convection parameter � reduces with increase in 
Prandtl number (Fig. 9). Nusselt number is rises which implies that the rate of heat transfer 
is enhanced with increase in Prandtl number (Fig.  10). The effect is more obvious with 
smaller Prandtl numbers because as the boundary layer becomes thicker (observed in 
Fig. 6), the heat transfer rate reduces. It is generally understood that fluids having lower 
Prandtl numbers possess high conductivity which results in large thermal boundary-lay-
ers. In this case heat diffuses rapidly from the heated plate compared to the case of fluids 
with high Prandtl numbers. Figures 11 and 12 represents the variation of skin friction fac-
tor and local Nusselt number with respect to mixed convection parameter � for different 
Eyring–Powell parameter. It is seen that increasing value of Eyring–Powell fluid parameter 
is responsible for decrease in skin friction coefficient (Fig. 11) as the velocity of the fluid 
decreases. While the rate of heat transfer increases (Fig. 12) due to fall in temperature by 
rising values of fluid parameter.
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Conclusions

The mixed convection flow of Eyring–Powell fluid flow over a vertical stretching plate 
having variable velocity and temperature with effect of convective boundary condition 
has been discussed with the help of non-similarity method and solved by HAM. Vali-
dation of the result has also done with the previous published works. The conclusions 
obtained from the study are:

• Momentum boundary layer thickness is less in local non-similarity method as com-
pare to local similarity method.

• The comparison of Newtonian fluid and Eyring–Powell fluid shows that magnitude 
of velocity is greater in case of Eyring–Powell fluid while it shows lesser magnitude 
of temperature than the Newtonian fluid.

• Skin friction coefficient is reduced with increase in values of Prandtl number and 
Local Nusselt number is increased with Prandtl number.

• Heat transfer coefficient increases while skin friction coefficient decreases with 
increase in fluid parameter.

Fig. 5  Effect of Pr on velocity profile for Newtonian and Eyring–Powell fluid

Fig. 6  Influence of Pr on temperature profile for Newtonian and Eyring–Powell Fluid
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• With the rise in mixed convection parameter, the momentum and thermal boundary-
layer thickness increase and decrease respectively.

• The behaviour of velocity and temperature profiles for different fluid parameter is 
same for both first and second level of truncation.

Fig. 8  Variation of temperature profile for Biot number �

Fig. 9  Effect of Pr on skin coef-
ficient friction against �

Fig. 10  Effect of Pr on Nusselt 
number against �



 Int. J. Appl. Comput. Math            (2020) 6:16 

1 3

   16  Page 20 of 22

Acknowledgements The authors are thankful to all reviewers for their useful comments which have helped 
to improve the present article.

References

 1. Pop, I., Ingham, D.B.: Convective Heat Transfer. Elsevier, Amsterdam (2001)
 2. Sakiadis, B.C.: Boundary layer behaviour on continuous solid surfaces: I. Boundary-layer equations 

for two dimensional and axisymmetric flows. AIChEJ 7(1), 26–28 (1961)
 3. Erickson, L.E., Fan, L.T., Fox, V.G.: Heat andmass transfer on moving continuous flat plate with suc-

tion or injection. Ind. Eng. Chem. Fundam. 5, 19–25 (1966)
 4. Karwe, M.V., Jaluria, Y.: Fluid flow and mixed convection transport from a moving plate in rolling and 

extrusion processes. ASME J Heat Transf. 110, 655–661 (1988)
 5. Vajravelu, K., Roper, T.: Flow and heat transfer in a second grade fluid over a stretching sheet. Int. J. 

Non-Linear Mech. 34(6), 1031–1036 (1999)
 6. Magyari, E., Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable 

stretching walls. Eur J. Mech B Fluids 19(1), 109–122 (2000)
 7. Patil, P.M., Roy, S., Pop, I.: Unsteady mixed convection flow over a vertical stretching sheet in a paral-

lel free stream with variable wall temperature. Int. J. Heat Mass Transf. 53, 4741–4748 (2010)
 8. Mustafa, N., Asghar, S., Hossain, M.A.: Natural convection flow of second-grade fluid along a vertical 

heated surface with variable heat flux. Int. J. Heat Mass Transf. 53(25), 5856–5862 (2010)
 9. Ahmadi, A.R., Zahmatkesh, A., Hatami, M., Ganji, D.D.: A comprehensive analysis of the flow and 

heat transfer for a nanofluid over an unsteady stretching flat plate. Powder Technol. 258, 125–133 
(2014)

 10. Rao, A.S., Prasad, V.R., Nagendra, N., Murthy, K.V.N., Reddy, N.B.: Numerical modeling of non-
similar mixed convection heat transfer over a stretching surface with slip conditions. World J. Mech. 
5(6), 117–128 (2015)

 11. Irgens, F.: Rheology and Non-Newtonian Fluids. Springer, Berlin (2014)

Fig. 11  Variation of Skin coef-
ficient friction against � for 
different fluid parameter �

Fig. 12  Variation of Nusselt 
number against � for different 
fluid parameter �



Int. J. Appl. Comput. Math            (2020) 6:16  

1 3

Page 21 of 22    16 

 12. Gorla, R.S.R., Pratt, D.M.: Second law analysis of a non-Newtonian laminar falling liquid film along 
an inclined heated plate. Entropy 9(1), 30–41 (2007)

 13. Ghadikolaei, S.S., Hosseinzadeh, K., Yassari, M., Sadeghi, H., Ganji, D.D.: Analytical and numerical 
solution of non-Newtonian second-grade fluid flow on a stretching sheet. Therm. Sci. Eng. Progr. 5, 
309–316 (2018)

 14. Powell, R.E., Eyring, H.: Mechanisms for the relaxation theory of viscosity. Nature 154, 427–428 
(1944)

 15. Andersson, H.I., Aarseth, J.B., Braud, N., Dandapat, B.S.: Flow of a power-law fluid film on an 
unsteady stretching surface. J. Nonnewtonian Fluid Mech. 62(1), 1–8 (1996)

 16. Ray, A.K., Vasu, B.: Hydrodynamics of non-newtonian spriggs fluid flow past an impulsively mov-
ing plate. In: Singh, M., Kushvah, B., Seth, G., Prakash, J. (eds.) Applications of Fluid Dynamics. 
Lecture Notes in Mechanical Engineering, pp. 95–107. Springer, Singapore (2018)

 17. Hayat, T., Iqbal, Z., Qasim, M., Obidat, S.: Steady flow of an Eyring–Powell fluid over a moving 
surface with convective boundary conditions. Int. J. Heat Mass Transf. 55, 1817–1822 (2012)

 18. Ghadikolaei, S.S., Hosseinzadeh, K., Ganji, D.D.: Analysis of unsteady MHD Eyring–Powell 
squeezing flow in stretching channel with considering thermal radiation and Joule heating effect 
using AGM. Case Stud. Therm. Eng. 10, 579–594 (2017)

 19. Gholinia, M., Hosseinzadeh, K., Mehrzadi, H., Ganji, D.D., Ranjbar, A.A.: Investigation of MHD 
Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reac-
tions. Case Stud. Therm. Eng. 13, 100356 (2019)

 20. Aziz, A.: A similarity solution for laminar thermal boundary layer over a flat plate with a convec-
tive surface boundary condition. Commun. Nonlinear Sci. Numer. Simulat. 14, 1064–1068 (2009)

 21. Bataller, R.C.: Radiation effects for the Blasius and Sakiadis flows with convective surface bound-
ary condition. Appl. Math. Comput. 206(2), 832–840 (2008)

 22. Khan, W.A., Gorla, R.S.R.: Heat and mass transfer in power-law nanofluids over a non-isothermal 
stretching wall with convective boundary condition. J. Heat Transf. 134(11), 112001 (2012)

 23. Murthy, P.V.S.N., RamReddy, C., Chamkha, A.J., Rashad, A.M.: Magnetic effect on thermally 
stratified nanofluid saturated non-Darcy porous medium under convective boundary condition. Int. 
Commun. Heat Mass Transf. 47, 41–48 (2013)

 24. RamReddy, C., Murthy, P.V.S.N., Chamkha, A.J., Rashad, A.M.: Soret effect on mixed convection 
flow in a nanofluid under convective boundary condition. Int. J. Heat Mass Transf. 64, 384–392 
(2013)

 25. Kameswaran, P.K., Sibanda, P., Murti, A.S.N.: Nanofluid flow over a permeable surface with con-
vective boundary conditions and radiative heat transfer. Math. Prob., Eng (2013)

 26. Vasu, B., Ram Reddy, C., Murthy, P.V.S.N., Gorla, R.S.R.: Entropy generation analysis in nonlinear 
convection flow of thermally stratified fluid in saturated porous medium with convective boundary 
condition. J. Heat Transf. 139(9), 091701 (2017)

 27. Chen, T.S., Sparrow, E.M.: Flow and heat transfer over a flat plate with uniformly distributed, vec-
tored surface mass transfer. ASME J. Heat Transf. 98, 674–676 (1976)

 28. Sparrow, E.M., Yu, H.S.: Local non-similarity thermal boundary layer solutions. Trans. ASME J. 
Heat Transf. 93, 328–334 (1971)

 29. Mushtaq, M., Asghar, S., Hossain, M.A.: Mixed convection flow of second grade fluid along a vertical 
stretching flat surface with variable surface temperature. Heat Mass Transf. 43(10), 1049 (2007)

 30. Vasu, B., Ray, A.K.: Numerical study of Carreau nanofluid flow past vertical plate with the Catta-
neo–Christov heat flux model. Int. J. Numer. Methods Heat Fluid Flow 29(2), 702–723 (2018)

 31. Liao, S.: Homotopy analysis method in nonlinear differential equations, pp. 153–165. Higher Edu-
cation Press, Beijing (2012)

 32. Turkyilmazoglu, M.: A note on the homotopy analysis method. Appl. Math. Lett. 23, 1226–1230 
(2010)

 33. Liao, S.J., Pop, I.: Explicit analytic solution for similarity boundary layer equations. Int. J. Heat 
Mass Transf. 47, 75–85 (2004)

 34. Liao, S.J.: Series solution of nonlinear eigenvalue problems by means of the homotopy analysis 
method. Nonlinear Anal. Real World Appl. 10, 2455–2470 (2009)

 35. Gorla, R.S.R., Kumari, M.: Non-similar solutions for mixed convection in non-Newtonian fluids 
along a vertical plate in a porous medium. Transport Porous Med. 33, 295–307 (1998)

 36. Cheng, W.T., Lin, H.T.: Non-similarity solution and correlation of transient heat transfer in laminar 
boundary layer flow over a wedge. Int. J. Eng. Sci. 40(5), 531–548 (2002)

 37. Farooq, U., Hayat, T., Alsaedi, A., Liao, S.J.: Series solutions of non-similarity boundary layer 
flows of nano-fluids over stretching surfaces. Numer. Algorithms 70(1), 43–59 (2015)



 Int. J. Appl. Comput. Math            (2020) 6:16 

1 3

   16  Page 22 of 22

 38. Chamkha, A., Gorla, R.S.R., Ghodeswar, K.: Non-similar solution for natural convective bound-
ary layer flow over a sphere embedded in a porous medium saturated with a nanofluid. Transport 
Porous Med. 86(1), 13–22 (2011)

 39. Kameswaran, P.K., Vasu, B., Murthy, P.V.S.N., Gorla, R.S.R.: Mixed convection from a wavy sur-
face embedded in a thermally stratified nanofluid saturated porous medium with non-linear Bouss-
inesq approximation. Int. Commun. Heat Mass Transf. 77, 78–86 (2016)

 40. Minkowycz, W.J., Sparrow, E.M., Schneider, G.E., Pletcher, R.H.: Handbook of Numerical Heat 
Transfer. Wiley-Interscience, New York (1988)

 41. Wanous, K.J., Sparrow, E.M.: Heat transfer for flow longitudinal to a cylinder with surface. J. Heat 
Transf. 87(2), 317–319 (1965)

 42. Catherall, D., Stewartson, K., Williams, P.G.: Viscous flow past a flat plate with uniform injection. 
Proc. R. Soc. Lond. A 284(1398), 370–396 (1965)

 43. Lee, S.Y., Ames, W.F.: Similarity solutions for non-Newtonian fluids. AIChEJ. 12(4), 700–708 (1966)
 44. Sparrow, E.M., Quack, H.: Local non-similarity boundary-layer solutions. AIAA J. 8(11), 1936–1942 

(1970)
 45. Massoudi, M.: Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge. Int. 

J. Non-Linear Mech. 36, 961–976 (2001)
 46. Mureithi, E.W., Mason, D.P.: Local non-similarity solutions for a forced-free boundary layer flow with 

viscous dissipation. Math. Comput. Appl. 15(4), 558–573 (2010)
 47. Ganji, D.D., Afrouzi, G.A., Talarposhti, R.A.: Application of variational iteration method and homot-

opy–perturbation method for nonlinear heat diffusion and heat transfer equations. Phys. Lett. A 368(6), 
450–457 (2007)

 48. Liao, S.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear 
Sci. Numer. Simul. 14(4), 983–997 (2009)

 49. Allan, F.M., Syam, M.I.: On the analytic solution of non-homogeneous Blasius problem. J. Comput. 
Appl. Math. 182(2), 362–371 (2005)

 50. Cheng, J., Liao, S., Mohapatra, R.N., Vajravelu, K.: Series solutions of nano boundary layer flows by 
means of the homotopy analysis method. J. Math. Anal. Appl. 343(1), 233–245 (2008)

 51. Ziabakhsh, Z., Domairry, G.: Solution of the laminar viscous flow in a semi-porous channel in the 
presence of a uniform magnetic field by using the homotopy analysis method. Commun. Nonlinear Sci. 
Numer. Simul. 14(4), 1284–1294 (2009)

 52. Kousar, N., Liao, S.J.: Series solution of non-similarity boundary-layer flows over a porous wedge. 
Transp. Porous Media 83(2), 397–412 (2010)

 53. Hassan, H., Rashidi, M.M.: An analytic solution of micropolar flow in a porous channel with mass 
injection using homotopy analysis method. Int. J. Numer. Methods H 24(2), 419–437 (2014)

 54. Dinarvand, S., Abbassi, A., Hosseini, R., Pop, I.: Homotopy analysis method for mixed convective 
boundary layer flow of a nanofluid over a vertical circular cylinder. Therm. Sci. 19(2), 549–561 (2015)

 55. Vasu, B., Ray, A.K., Gorla, R.S.R.: Homotopy simulation of non-Newtonian Spriggs fluid flow over a 
flat plate with oscillating motion. Int. J. Appl. Mech. Eng. 24(2), 359–385 (2019)

 56. Ray, A.K., Vasu, B., Bég, O.A., Gorla, R.S.R., Murthy, P.V.S.N.: Magneto-bioconvection flow of a 
Casson thin film with nanoparticles over an unsteady stretching sheet. Int J. Numer. Method H 29(11), 
4277–4309 (2019)

 57. Hayat, T., Iqbal, Z., Qasim, M., Alsaedi, A.: Flow of an Eyring–Powell fluid with convective boundary 
conditions. J. Mech. 29, 217–224 (2013)

 58. Nataraja, H.R., Sarma, M.S., Rao, B.N.: Flow of a second-order fluid over a stretching surface having 
power-law temperature. Acta Mech. 128(3–4), 259–262 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Non-similar Solution of Eyring–Powell Fluid Flow and Heat Transfer with Convective Boundary Condition: Homotopy Analysis Method
	Abstract
	Introduction
	Mathematical Formulation
	Non-similarity Method
	First Level of Truncation (Local Similarity)
	Local Non-similarity Method

	Solution by HAM
	Convergence of HAM
	Result and Analysis
	Conclusions
	Acknowledgements 
	References




