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A B S T R A C T

This paper presents a dual closed-loop sliding mode control strategy for a wheeled mobile manipulator with
three-wheeled mobile platform (WMP) and three-link manipulator. The Euler-Lagrange method combined
partially with the Newtonian method is applied to obtain full dynamic model and decoupled model is con-
structed in order to provide simple dynamic model for controller's structure to be simplified. Instead of the
conventional velocity command trajectory based kinematic backstepping control method, a dual closed-loop
control system is designed. A virtual velocity command based on sliding mode surface is generated in outer loop
and the gap between a generated virtual command velocity and real velocity is compensated by an inner loop
sliding mode controller. Outer loop helps to faster posture trajectory generation for locomotion of the WMP.
Next, a finite-time sliding mode controller with an assumed feedforward dynamic gain method is designed for
joint trajectory tracking for three-link manipulator by adding finite-time control terms in the designed con-
trollers to obtain faster settling time and stronger robustness. The designed controllers were implemented into
microprocessor connected to DC and dynamixel motor systems equipped in mobile platform and manipulator,
respectively. Comparative simulation and experiment with a conventional sliding mode control show the ef-
fectiveness of the proposed dual closed-loop finite time sliding mode control scheme.

1. Introduction

Over the past decades, there have been many studies on wheeled
mobile manipulators [1–7], which have become increasingly ubiqui-
tous and are applied to several fields, including hazardous exploration,
search and rescue, health-care, manufacturing, and entertainment. A
wheeled mobile manipulator is comprised of wheeled mobility config-
uration and one or more robotic arms mounted on the mobile platform.
The combination of platform mobility and arm manipulability increases
the ability to perform dexterous robotic works that require both loco-
motion and manipulation compared to fixed manipulators. However,
the configuration of kinematic and dynamic model is complex due to
the coupling motion between the wheeled mobile platform (WMP) and
manipulator. For kinematic posture control of the WMP, in many cases,
the backstepping method [8–12] based on the reference velocity
tracking viewpoint has been adopted with consideration of non-
holonomic constraint condition. Thus, a desired position command is
indirectly generated from the velocity command. This makes intuitive
posture generation to be difficult except simple motion case. Depending

on this velocity tracking method, when various motion configurations
are required, it is difficult to obtain position command directly. If a
direct and intuitive posture control command is adopted in the WMP
control scheme, the generation of position trajectory can be con-
veniently and easily generated.

Recently, the dual closed-loop control method combined with
sliding mode control (SMC) [13–17] has been developed in the aero
vehicle control and servo systems [17] [18], where the kinematic and
kinetic control loop were separated as the outer and inner loops, re-
spectively and two loop controllers for each loop were constructed. By
borrowing this concept, we apply this dual closed-loop SMC to posture
control of the WMP system. As an outer loop control system, a kine-
matic control system is constructed such that a position reference
command is directly chosen and virtual velocity command is designed
to generate the target velocity of the dynamic controller of the WMP.
Next, an inner loop controller is built such that coupling effect trans-
ferred from manipulator motion as well as the dynamic effect of mobile
platform are compensated by a designed sliding mode controller. This
control can provide more intuitive position tracking target and is more
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conveniently used in the WMP motion control than the conventional
velocity command based backstepping posture control method [8–12].

Dynamics of the whole system including both three-wheeled WMP
and three-link manipulator are modeled using Euler-Lagrange equation
with consideration of kinematic and kinetic relations of each compo-
nent. Next, decoupled dynamic equations are built to avoid heavy
controller structure and make controller to be designed easily. The
sliding mode controllers for each loop are designed and a feedforward
model obtained from iterative parameter assuming process is con-
sidered in the controller to bypass complex parameters identification of
the mobile manipulator system. For comparing with the proposed dual
closed-loop finite-time SMC system, the conventional first-order sliding
mode controller with dual closed-loop is designed. Moreover, by
adopting robust SMC scheme with additional finite-time control terms,
which guarantee faster settling time and stronger robustness in the
mobile manipulator system, more robust control performance against
uncertainty of coupling effect between mobile platform navigation and
variation of manipulator working condition can be obtained. The sta-
bility analysis for the closed-loop system with these control terms is
conducted and finite-time is induced by the finite-time control theorem
[19,20]. Furthermore, unlike the conventional terminal SMC [21], a
proposed finite-time control can void the singularity problem of the
conventional terminal SMC without introducing the terminal sliding
mode surface.

Next, the designed control systems were implemented into the de-
signed ARM microprocessor control board combined with the mobile
robot DC motor drive system and dynamixel motor system [22] in the
manipulator to execute experimental performance verification.

The main contributions of this study are summarized as follows: 1)
the full dynamic model of the wheeled mobile manipulator is con-
structed and its model is decoupled as two parts. 2) By generating
virtual velocity command, an outer loop SMC is designed to provide
more intuitive posture tracking trajectory of the WMP than the con-
ventional velocity tracking method. 3) An inner loop robust sliding
mode controller is designed to guarantee finite-time convergence with
an assumed dynamic parameter method that can give fast controller
design without depending on tedious parameter identification. 4) Faster
convergence time and stronger robustness are obtained by only con-
sidering finite-time control terms in the designed sliding mode con-
trollers.

Application examples of simulation and experiment were presented
for verification of the proposed method with comparison of the con-
ventional sliding mode control.

2. Problem formulation

2.1. Dynamic model of three-wheeled mobile manipulators

We made a three-wheeled mobile manipulator system as shown in
Fig. 1. The mobile robot has three wheels with two driving wheel in left
and right sides and passive wheel in the front part. The manipulator has
three links and 3° of freedom, where each rotation axis is equipped with
dynamixel motor. The dynamic equations of a three-wheeled mobile
manipulator system are derived using the Euler-Lagrange equation ac-
cording to the kinematics and force relations of Fig. 1. The derived
dynamics are modified from the relationship of forces acting on the
body and links, and constraints between the wheel and contact surface
without considering the Lagrange multiplier method, which is used to
solve the nonholonomic constraint problems of mobile robots. The
variable of three-wheeled mobile manipulator are defined as follows: τr ,
τl, τ1, τ2, and τ3 are the torque acting on two wheels, joint 1, 2, and 2,
respectively, θrandθlare the rotation angle of the left and right wheel of
the mobile platform; R and φ are the forward traveled position and the
rotation angle of the mobile platform; vandωare the forward traveled
velocity and the rotation velocity of the mobile platform; θ1, θ ,2 and θ3
are the rotation angles of links 1, 2, and 3 with respect toz0, z1, and
z2axes; m m, ,p w m ,1 m m,2 3are the mass of the mobile platform, wheel,
link 1, and link 2; Iz and Izw are the moment of inertia of the mobile
platform and wheel with respect to z0 axis; d is the distance between
point P and wheels; r is the radius of the wheels; l1, l ,2 and l3are the
lengths of link 1, link 2, and link 3; andr2and r3are the distance between
joints and the center of mass of the links.

Forces and torques acting on the body and each link are described in
Fig. 2 and the tire dynamic relations are illustrated in Fig. 3 where
FrandFlare the force interacting between the left and right wheels;
TrandTlare the torque generated in the left and right wheels; FfrandFflare
the friction force interacting between the wheels and the contact sur-
face. The position of C, the center of mass of the mobile platform are
given as x and y. The position of the center of mass for two wheels are
given by

= +x x d φsin ,r

= −y y d φcos ,r

= −x x d φsin ,l

= +y y d φcos ,l (1)

Fig. 1. Photograph and schematic description of the designed mobile manipulator.
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Letr r,1 2, and r3denote the distance between joints and the center of
mass of links. The coordinates of the center of mass of link1, link2, and
link3 can be given as

=x x,1

=y y,1

= + +x x r θ φ θsin cos( ),2 2 2 1

= + +y y r θ φ θsin sin( ),2 2 2 1

= + + + + +x x l θ φ θ r θ θ φ θsin cos( ) sin( )cos( ),3 2 2 1 3 2 3 1

= + + + + +y y l θ φ θ r θ θ φ θsin sin( ) sin( )sin( ).3 2 2 1 3 2 3 1 (2)

The kinematic energy is expressed as follows:

= + + + +
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(3)

where = +m m mp b 1, =sθ θsin , =cθ θcos , and = +θ θ θij i j. The po-
tential energy is obtained as follows:

= + +V m gr sθ m g l sθ r sθ( ).2 2 2 3 2 2 3 23 (4)

By defining Lagrangian = −L T V and using the Euler-Lagrange

equation − =∂
∂

∂
∂( ) Qd

dt
L
q

L
q˙ , the system dynamics subject to non-

holonomic constraint is formulated as

+ + + = −M q q C q q q G q τ Bτ A λ( ) ¨ ( , ˙ ) ˙ ( ) ,d
T
0 (5)

where =q x y φ θ θ θ[ ]T
1 2 3 is a generalized coordinate; M q( )is a sym-

metric and positive definite inertia matrix; C q q( , ˙ )is a matrix of velo-
city-dependent centripetal and Coriolis forces; G q( )is a gravitational
vector; τdis a bounded unknown disturbance including unmodelled
dynamics and exogenous disturbance; Bis the input transformation
matrix; τ is an input torque vector; =A A[ 0]o

T T T Ais a vector related to
nonholonomic condition of WMP defined in (17); andλis the Lagrange
multiplier.

The tire dynamics from Fig. 3 are given as.

= − +m x F F¨ ,r r r fr

= − +m x F F¨ ,l l l fl (6)

= −I θ τ rF¨ ,w r r fr

= −I θ τ rF¨ ,w l l fl (7)

where = =m m mr l w, FrandFlare traction force, andFfrandFflare friction
force. Then, based on (6) and (7), we obtain

= − −F τ
r

I θ
r

m x
¨

¨ ,r
r w r

w r

= − −F τ
r

I θ
r

m x
¨

¨ ,l
l w l

w l (8)

The relationship between =θ x r¨ ¨ /r r and =θ x r¨ ¨ /l l are provided if a slip
does not occur between tire and contact surface. Using the force and
torque relationships of Fig. 3, (8) can be expressed as the following
forces and torques:

= − ⎛
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Considering the above relationships, the dynamic matrices and
vectors given in (5) can be expressed as the following decoupled form:
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Fig. 2. Force and torque acting on the body.

Fig. 3. Force and torque acting on the wheel.
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where
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Property 1. The inertia matricesMare symmetric, positive definite, and
bounded. The norms of C q q( , ˙ )are also bounded.

Property 2. The matrices −M q C q q˙ ( ) 2 ( , ˙ )are skew-symmetric because
of the suitable definition of the corresponding inertia and Coriolis
matrix.

Fig. 4. Block diagram of the posture control system for the WMP.
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3. Design the dual closed-loop sliding mode controller of three-
link mobile manipulator and stability analysis

3.1. Kinematics of the mobile platform

The WMP system has three degrees of freedom as =q x y φ[ ]v
T .

The velocity relation of the WMP is given as

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

=q
x
y
φ

φ
φ

v
ω J φ v˙

˙
˙
˙

cos 0
sin 0

0 1
( ) .v

l
v

(15)

where ∈v t R( )l denotes the linear velocity of the point C of the WMP,
∈ω t R( ) denotes the angular velocity of the point C of the WMP, and

J φ( )v is a transformation matrix which transforms velocities v in mobile
coordinates to velocities q̇vin Cartesian coordinates. The nonholonomic
velocity constraint declares that driving wheels purely roll and do not
slip. In the other words, the WMP can only move in a direction, which is
normal to the axis of the driving wheels,

− =y φ x φ˙ cos ˙ sin 0, (16)

=A q q( ) ˙ 0,T
v v (17)

where = −A q φ φ( ) [ sin cos 0]T
v

T .

3.2. Design of the kinematic baskstepping controller for the WMP

Traditionally, the kinematic backstepping control has been fre-
quently applied to posture control for the WMP system. We illustrate
briefly this method. A reference of the WMP that generates a trajectory
for the actual one to follow:

=q J φ v˙ ( ) ,vr v r r (18)

where = ∈q x y φ R[ ]vr r r r
T 3denotes the desired time-varying position

and orientation trajectory, and = ∈v v ω R[ ]r lr r
T 2 denotes the reference

time-varying linear and angular velocity. In real application, vrand its
derivative are known and bounded. It is necessary to find the appro-
priate velocity control law =v v ω[ ]c lc c

T , such that →q qv vras → ∞t . The
trajectory tracking problem is to track a reference mobile robot with a
postureqvr . Therefore, we define tracking error between the actual and
desired posture:

= − =
⎡

⎣
⎢
⎢

−
−
−

⎤

⎦
⎥
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q q q
x x
y y
φ φ

.͠ v v r

r

r

r (19)

The posture tracking error is then obtained as follows:

Fig. 5. The generated motion command of the WMP system. (a) Linear and rotary command motion. (b). Command motions in x and y directions. (c) Command
angle.
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From the relations of (15), (18), and (20), we have
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The target or command velocity using backstepping method is given
as

= ⎡
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wherek k,v v1 2andkv3are positive constants and >v 0lr . This is called the
kinematic control. If the perfect velocity tracking is achieved as

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
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then the kinematic model is asymptotically stable with respect to the
reference trajectory: = →q e e e[ ] 0ve v v v

T
1 2 3 as → ∞t .

3.3. Design outer closed-loop kinematic sliding mode controller for the WMP

We define tracking error between the actual and desired posture:

= − =
⎡

⎣
⎢
⎢

−
−
−

⎤

⎦
⎥
⎥

q q q
x x
y y
φ φ

.ve v vc

c

c

c (24)

The sliding surface of the outer loop of the mobile platform is de-
fined as

∫= +s q k q dt,vo ve voe
t

ve0 (25)

where = >k diag k k k( , , ) 0voe voex voey voeφ is a gain matrix. Taking the
virtual velocity commandvvcas the virtual control of the velocityvvof the
mobile platform instead of the command velocity in (22), we have

=q J φ v˙ ( ) .v v vc (26)

To satisfy the stability condition, which will be given in Section 3,
we define

= − −
+

−s k s k s
s ε

k sig s˙ ( ) ,vo vo vo vo
vo

vo vo
vo vo

γ
1 2 3 vo

(27)

where = > =k diag k k k j( , , ) 0, 1,2,3,voj vojx vojy vojφ are gain matrices,
>ε 0vo and < <γ0 1vo are constants, and =sig s s sign s( ) ( )vo

γ
vo

γ
vovo vo . We

then obtain the following result:

Fig. 6. The generated command motion for the manipulator. (a) The motions of the end-effector and each joint. (b) Joint motions.
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= +
= − +

= − + = − − −+

s q k q
q q k q

J φ v q k q k s k k sig s

˙ ˙
˙ ˙

( ) ˙ ( ) .

vo ve voe ve

v vc voe ve

v vc vc voe ve vo vo vo
s

s ε vo vo
γ

1 2 3
vo

vo vo
v0

(28)

A finite time outer loop controller is obtained from (28) as follows:

⎜ ⎟= ⎛
⎝

− − −
+

− ⎞
⎠

+v J φ q k q k s k s
s ε

k sig s( ) ˙ ( ) ,vc v vc voe ve vo vo vo
vo

vo vo
vo vo

γ
1 2 3 vo

(29)

where =+ −J φ J φ J φ J φ( ) ( ( ) ( )) ( )v v
T

v v
T1 is the pseudo inverse ofJ φ( )v .

Remark 1. In the outer loop controller given in (29), it is well known
that the controller term of the sigmoid function +s s ε/( )vo vo vo , is related
to the disturbance rejection performance. If →ε 0vo , this term becomes
the sign function, which leads to more rigorous disturbance rejection
performance but more chattering appears in control input. The
controller term− k sig s( )vo vo

γ
3 vo, guarantees fast settling time and

provides more improved disturbance rejection performance indirectly
like the terminal sliding scheme [21]. This property will be proved in
the Lyapunov stability theorem.

3.4. Design of the inner loop dynamic sliding mode controller for the WMP

In (14), the mobile dynamics is separated as follows:

+ + = −M q C q F B τ A λ¨ ˙v v v v dv v v
T (30)

where = + +F M q C q τ¨ ˙dv vm m vm m dv. From (18), we have = +q J v J v¨ ˙ ˙
v v v v v.

Therefore, (30) can be written as

+ + + = −M J v M J C J v F B τ A λ˙ ( ˙ ) .v v v v v v v v dv v v
T (31)

Because of =J q A q( ) ( ) 0v
T

v
T

v , multiplyingJ q( )v
T

v into the left side of
(31) gives

+ + =′ ′ ′ ′M v C v F B τ˙ ,v v v v dv v v (32)

where =′M J q M J( )v v
T

v v v, = +′C J M J C J( ˙ )v v
T

v v v v , =′F J Fdv v
T

dv, and =′B J Bv v
T

v

= ⎡
⎣⎢ −

⎤
⎦⎥

r r
d r d r
1/ 1/

/ /
.

Next, a finite-time sliding mode controller is designed with assumed
model feedforwarding technique.

Assumption 1. There are positive real numbers, K K,mv cv, andKdvthat
satisfy the following conditions:

⎧

⎨
⎪

⎩⎪

≤
≤
≤

′

′

′

M K
C K
F K

,
v mv

v cv

dv dv (33)

where ∈ ×K Rmv
2 2 and ∈ ×K Rcv

2 2 are positive finite diagonal matrices
and ∈K Rdv

2 is a positive vector, which are determined through trial
and error method.

Assumption 2. There are positive real numbers, Δmv, Δcv, andΔdv that
satisfy the following conditions:

⎧

⎨
⎪

⎩⎪

− ≤

− ≤

− ≤

′

′

′

K M q

K C q q

K F

( ) Δ

( , ˙ ) Δ

Δ

,
mv v v mv

cv v v v cv

dv dv dv (34)

whereΔmvΔcv, andΔdvinclude the assumed error and off-diagonal
coupled dynamics of each parameter.

The auxiliary tracking error and command error are defined as

Fig. 7. Simulation results of the WMP for the linear and rotational motion command input of the SMC and. PFSMC systems: (a) Position tracking output. (b) X-
direction tracking error. (c) Y-direction tracking error. (d) Angular tracking error.
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follows:

= −e v v ,vi v vc (35)

∫= −r v Λ e dτ,vi vc vi
t

vi0 (36)

where =e e e[ , ]v vv ω
T =v v v[ , ]vc cv cω

T is the desired trajectory,
=Λ diag Λ( ,vi vv >Λ ) 0vω is a constant matrix. The filtered second-order

error surface is chosen as

= −s v r ,vi v vi (37)

The dynamic equation (32) with (37) can be written as

= −
= − − − +

= − − − + −

′ ′ ′

′ ′ ′ ′

′ ′ ′ ′ ′

M s M v M r
M r C v F B τ

M r C r F B τ C s

˙ ˙ ˙
˙

˙ .

v vi v v v vi

v v v v dv v v

v v v v dv v v v v (38)

We select the dynamic control lawτvito satisfy the stability condi-
tion, which is given in Section 3, as

= ⎡
⎣⎢

− + −
+

− ⎤
⎦⎥

−τ B k s Ξ ϕ k s
s ε

k sig s( ) ,vi v vi vi v
T

v vi
vi

vi vi
vi vi

γ1
1 2 3 vi

(39)

where = >k diag k k( , ) 0vi viv viω1 is a constant matrix, kvi2andkvi3are the
diagonal constant matrices, =Ξ K K K[ , , ]v mv cv dv

T ,
=ϕ r r[ ˙ , , 1,1]v vivw vivw

T =r r r˙ [ ˙ , ˙ ]vivw viv viw , =r r r[ , ]vivw viv viv ,
≥ε 0vi and < <γ0 1vi are constants, and =sig s s sign s( ) ( )vi

γ
vi

γ
vivi vi . The

block diagram of the conventional posture and the proposed dual
closed-loop posture control system for WMP is described in Fig. 4,
where it can be seen that the structure of the proposed posture control
system is simpler and easier to be implemented into real experimental
system than the conventional posture control system for WMP.

3.5. Design of sliding mode controller of the manipulator

In this section, a sliding mode controller for three-link manipulator
shown in Fig. 1 is designed. The separated dynamics of the manipulator
from (14) can be expressed as follows:

+ + + =M q C q q q G F B τ¨ ( , ˙ ) ˙ ,m m m m m dm m m (40)

where = + +F M q C q τ¨ ˙dm mv v mv v dm.

Assumption 3. There are positive real numbersK K,v v1 2, andKv3that
satisfy the following conditions:

⎧

⎨
⎪

⎩
⎪

≤
≤
≤
≤

M K
C K
G K
F K

,

m mm

m cm

m gm

dm dm (41)

where ∈ ×K Rmm
3 3 and ∈ ×K Rcm

3 3 are positive finite diagonal matrices,
∈K Rgm

3 and ∈K Rdm
3 is a positive vector, which are determined

through trial and error method.

Assumption 4. There are positive real numbers, Δmm, Δcm,
ΔgmandΔdmthat satisfy the following conditions:

⎧

⎨
⎪

⎩
⎪

− ≤
− ≤
− ≤

− ≤

K M
K C
K G

K F

Δ
Δ
Δ
Δ

,

mm m mm

cm m cm

gm m gm

dm dm dm (42)

whereΔmmΔcm, ΔgmandΔdmare the upper bounds of the norm for the off-
diagonal coupled term and diagonal estimation error. The joint tracking
error, command error, and its derivative are defined as

= −e q q ,m m md (43)

Fig. 8. Simulation results for manipulator of the SMC and PFSMC systems for the change of mass in link 3. (a) Joint 1 angle tracking result. (b) Joint 2 tracking result.
(c) Joint 3 tracking result.
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= −r q Λ e˙ ,m md m m (44)

where =q q q q[ , , ]md dθ dθ dθ
T

1 2 3 is the desired trajectory,
=e e e e[ , , ]m θ θ θ

T
1 2 3 , and =Λ diag Λ Λ( , ,m m m1 2 >Λ ) 0m3 is a constant

matrix. The filtered error surface is chosen as

= −s q r˙ .m m m (45)

The dynamic equation (45) can be written as

= −
= − − − + −

= − − − − +

M s M q M r
C q q q G q F B τ M r

M r C q q r F C q q s B τ

˙ ¨ ˙
( , ˙ ) ˙ ( ) ˙

˙ ( , ˙ ) ( , ˙ ) .

m m m m m m

m m m m m m dm m m m m

m m m m m m dm m m m m m m (46)

We select the control lawτmto satisfy the stability condition, which is
given in Section 3, as

= + +−τ B τ τ τ( ).m m meq mr mf
1 (47)

where

= − +τ k s Ξ ϕ ,meq m m m
T

m1 (48)

= −
+

τ k s
s ε

,mr m
m

m m
2 (49)

= −τ k sig s( ) ,mf m m
γ

3 m (50)

= >k diag k k k( , , ) 0m m m m1 11 12 13 = >k diag k k k( , , ) 0m m m m2 21 22 23 ,
= >k diag k k k( , , ) 0m m m m3 31 32 33 are constant matrices, respectively,
=Ξ K K K K[ , , , ]m

T
mm cm gm fm =ϕ r r[ ˙ , , 1,1,1,1,1,1]m m m

T ,
=r r r r˙ [ ˙ , ˙ , ˙ ]m m m m1 2 3 , =r r r r[ , , ],m m m m1 2 3 ≥εm

0and < <γ0 1m are constants, and =sig s s sign s( ) ( )m
γ

m
γ

mm m . The con-
troller termτmf , leads to more rapid response like the WMP controller by
selecting proper gains.

Remark 2. In the conventional terminal sliding mode control, the
terminal sliding surface is generally defined as

= +s e Λ sig e˙ ( )m m m m
γ

1 m[21]. Next, the time derivative of the terminal
sliding surface is = + −s e γ Λ e e˙ ¨ ˙m m m m m

γ
m1

1m . Then, the singularity
problem appears because −γ Λ e ėm m m

γ
m1

1m goes to infinity due
to− < − <γ1 1 0m when =e 0m and =ė 0m . However, this singularity
problem does not exist in the proposed finite time sliding mode
control because = +s e Λ sig e˙ ( )m m m m

γ
1 mis not used. The finite control

term is considered only in the final controller (47). For this controller,
the finite time convergence is proved in the next section.

3.6. Stability analysis of the closed-loop control systems for the WMP and
manipulator systems

Lemma 1. [19], [20]. For system (14), the origin of the system is finite
time stable if and only if there is a continuous differentiable positive
definite time functionV and real numbers >c 0and ∈γ (0,1), in
which + ≤V cV˙ 0γ . The upper bound of settling timeTssatisfies the
condition

≤
−

−T
c γ

V1
(1 )

.s
γ1

(51)

Furthermore, an extended Lyapunov description of finite time sta-
bility can be given with the form as

+ + ≤V c V c V˙ 0,γ
1 2 (52)

where >c 01 and >c 02 are real numbers, and the settling time can be
given by

≤
−

+−
T

c γ
c V c

c
1

(1 )
ln .s

γ

1

1
1

2

2 (53)

Lemma 2. [22]. Suppose a a, , ...1 2 , an and < <p0 2are all real
numbers. The following inequality holds:

+ +⋯+ ≤ + + ⋯+a a a a a a( ) .n
p p p

n
p

1
2

2
2 2 /2

1 2 (54)

Define the Lyapunov function as follows:

= + +V V V Vvo vi m (55)

where

=V s s1
2

,vo vo
T

vo (56)

= ′V s M s1
2

,vi vi
T

v vi (57)

=V s M s1
2

.m m
T

m m (58)

The time derivative of (55) based on (28), (38), and (46) is given as

⎜

= + + + +

= ⎡

⎣
⎢

⎛
⎝

− − − − ⎞

⎠
⎟

− − +

+ − − − + + −

+ − − − − + + −

′ ′

+
+

′ ′ ′ ′ ′ ′

V s s s M s s M s s M q s s M q s

s J φ J φ q k q k q k s k

k s sign s q k q

s M r C r F B τ s M C s

s M r C r G F B τ s M C s

˙ ˙ ˙ ˙ ( ) ˙ ˙ ( )

( ) ( ) ( ˙ )

( ) ˙ ]

[ ˙ ] [ ˙ 2 ]

[ ˙ ] [ ˙ 2 ] .

vo
T

vo v
T

v v v
T

v v m
T

m m m m
T

m m m

vo
T

v v vc voe ve voe ve vo vo vo
s

s ε

vo vo
γ

vo vc voe ve

vi
T

v v v v dv v v vi
T

v v vi

m
T

m m m m m dm m m m
T

m m m

1
2

1
2

1 2

3

1
2

1
2

vo
vo vo

vo

(59)

Based on the controllers in (29), (39), (47) and property 2, (59) can
be expressed as

≤ − −
+

− −

−
+

−

+

+

V k s s k
s s

s ε
k s k s s

k
s s

s ε
k s

˙ vo vo
T

vo vo
vo
T

vo

vo vo
vo vo

γ
vi vi

T
vi

vi
vi
T

vi

vi vi
vi vi

γ

1 2 3
1

1

2 3
1

vo

vi

− −
+

−

+ − + − + −

+

′ ′ ′

k s s k
s s

s ε
k s

s K r M r K r C r K F[ ˙ ˙ ( )]

m m
T

m m
m
T

m

m m
m m

γ

vi
T

mv vi v vi cv vi v vi dv dv

1 2 3
1m

+ − + − + − + −s K r M r K r C r K G K F[ ˙ ˙ ( ) ( )]m
T

mm m m m cm m m m gm m dm dm

≤ − −
+

− − −
+

−

+

+

k s k s
s ε

k s k s k s
s ε

k s

vo vo vo
vo

vo vo
vo vo

γ
vi vi vi

vi

vi vi

vi vi
γ

1
2

2
2

3
1

1
2

2
2

3
1

vo

vi

− −
+

−

+ − + − + −

+

′ ′ ′

k s k s
s ε

k s

s K M r K C r K F[ ˙ ) ]

m m m
m

m m
m m

γ

vi mv v vi cv v vi dv dv

1
2

2
2

3
1m

+ − + − + −

+ −

s K M r K C r K G

K F

[ ˙

]

m mm m m cm m m gm m

dm dm

= − −
+

− − −
+

−

+

+

k s k s
s ε

k s k s k s
s ε

k s

vo vo vo
vo

vo vo
vo vo

γ
vi vi vi

vi

vi vi

vi vi
γ

1
2

2
2

3
1

1
2

2
2

3
1

vo

vi

− −
+

−

+ + +

+k s k s
s ε

k s

s r r[Δ ˙ Δ Δ ]

m m m
m

m m
m m

γ

vi mv vi cv vi dv

1
2

2
2

3
1m

+ + + +s r r[Δ ˙ Δ Δ Δ ]m mm m cm m gm dm

= − − − − −

−

+ +

+

k s k s k s k s k s

k s
vo vo vo vo

γ
vi vi vi vi

γ
m m

m m
γ

1
2

3
1

1
2

3
1

1
2

3
1

vo vi

m
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⎜ ⎟ ⎜ ⎟− ⎛
⎝ +

− ⎞
⎠

− ⎛
⎝ +

− ⎞
⎠

s k s
s ε

ρ s k s
s ε

ρvi
vi vi

vi vi
vi m

m m

m m
m

2 min 2 min

(60)

where =k λ k( )vi vi2 min min 2 =k λ k( )m m2 min min 2 ,
= + +ρ r rΔ ˙ Δ Δvi mv vi cv vi dv = + +ρ r rΔ ˙ Δ Δm mm m cm m gm + Δdm.

Ifkvi2 min and km2 min are selected such that ≥ +k s ρ s ε( )vi vi vi vi vi2 min
and ≥ +k s ρ s ε( )m mi m m m2 min are guaranteed, it follows that

= + +V V V V˙ ˙ ˙ ˙vo vi vm

≤ − − − − −

−

+ +

+

k s k s k s k s k s

k s
vo vo vo vo

γ
vi vi vi vi

γ
m m

m m
γ

1
2

3
1

1
2

3
1

1
2

3
1

vo vi

m (61)

Based on Lemma 2, (61) can be rewritten as

≤ − − − − −

−

+ +

+

V k s k s k s k s k s

k s

˙ ( ) ( )

( ) .
vo vo vo vo

γ
vi vi vi vi

γ
m m

m m
γ

1
2

3
2 ( 1)/2

1
2

3
2 ( 1)/2

1
2

3
2 ( 1)/2

vo vi

m (62)

From the definition of (57) and (58) with the fact that ≤s s , it
follows that

= ≤ = ≤′ ′ ′ ′V s M s λ M s s λ M s λ M s1
2

1
2

( ) 1
2

( ) 1
2

( ) ,vi vi
T

v vi v vi
T

vi v vi v vimax max
2

max
2

= ≤ =

≤

V s M s λ M s s λ M s

λ M s

1
2

1
2

( ) 1
2

( )

1
2

( ) .

m m
T

m m m m
T

m m m

m m

max max
2

max
2

(63)

Based on Lemma 2, Based on Lemma 2, (61), (62), and (63), the
following expression can be obtained:

≤ − −V c V c V˙ ,vo vo vo
μ

1 2
1 (64)

≤ − −V c V c V˙ ,vi vi vi
μ

3 4
2 (65)

≤ − −V c V c V˙ ,m m m
μ

5 6
3 (66)

with = = +c k c k2 , 2vo
γ

vo1 1 2
( 1)/2

3vo = =′ ′

+
c c,k

λ M
k

λ M3
2

( ) 4
2

( )
vi

v

γvi vi
v

1
max

( 1)/2 3
max

Fig. 9. Hardware system of the mobile manipulator. (a) Diagram of the main control board and sensor system.

Table 1
Parameters of the WMP and manipulator systems.

Symbol Parameter Value

m m m m m, , , ,p w 1 2 3 mass of body, wheel, link1, 2,
3

kg5 , kg0.58 , kg0.5 kg0.5 kg0.5

l l l, ,1 2 3 length of link1, 2, 3 mm nm mm110 , 255 , 120
d the distance between the

point P and wheel
m0.145

r radius of wheel m0.075
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= =
+

c c,k
λ M

k
λ M5

2
( ) 6

2
( )

m
m

γm m
m

1
max

( 1)/2 3
max

= +μ γ( 1)/2vo1 = +μ γ( 1)/2vi2 ,
and = +μ γ( 1)/2vm3 . Then, using Lemma 1, the finite convergence times
in the WMP and manipulator systems are given respectively as

≤
−

+−
T

c μ
c V c

c
1

(1 )
ln ,svo

μ

1 1

1
1

2

2

1

(67)

≤
−

+−

T
c μ

c V c
c

1
(1 )

ln ,svi
vi

μ

3 2

3
1

4

4

2

(68)

≤
−

+−
T

c μ
c V c

c
1

(1 )
ln .sm

m
μ

5 3

5
1

6

6

3

(69)

The final finite convergence time of the whole system is determined
as

=T T T Tmax( , , ),s svo svi sm (70)

i.e., the final convergence time is the longest time among each con-
vergence time.

Remark 3. The finite time sliding mode controllers designed in (29),
(39), and (47) become the normal sliding mode controllers if the finite
time control terms, − k sig s( )vo vo

γ
3 vo− k sig s( )vi vi

γ
3 vi, and− k sig s( )m m

γ
3 m,

are removed from each controller. In this case, the final reaching
time can be obtained as T Tmax( , )rv rm , where ≤T s K(0) /rv v v,

≤T s K(0) /rm m m, =s s s[ ]rv vo vi
T , KvandKmare constants defined

properly from WMR and manipulator control systems.

4. Simulation and experimental application

In this section, simulation and experiment results for posture control
of the WMP and joint position control of manipulator. The dynamic
parameters of mobile manipulator are listed in Table 1. The command
input of the WMP system is generated as the linear and rotary motion
shown in Fig. 5, where Fig. 5 (a) is decomposed into Fig. 5 (b) and (c).

Next, to generate the link motions, the inverse kinematics for the
end-effector need to be obtained. Thus, based on the kinematic con-
figuration of three links in Fig. 1 (b), the following relations can be
derived:

= + +x l θ l θ θ θ( sin sin( ))cos ,e 2 2 3 2 3 1

= + +y l θ l θ θ θ( sin sin( ))sin ,e 2 2 3 2 3 1

= + + +z l l θ l θ θcos cos( ),e 1 2 2 3 2 3 (71)

where x y z( , , )e e e is the coordinate of the end-effector with respect to
robot frame point C. The inverse kinematics for the 3-DOF manipulator

Fig. 10. Experimental results for the linear and rotational motion command input of the SMC and PFSMC systems: (a) Position tracking output. (b) X-direction
tracking error. (c) Y-direction tracking error. (d) Angular tracking error.

Table 2
RMS values for the tracking error of the WMP.

System X-direction (m) Y-direction (m) φ-direction (rad)

SMC (100%) 0.036 (100%) 0.007 (100%) 0.017 (100%)
FSMC (60%) 0.018 (50%) 0.004 (57%) 0.012 (71%)
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can be obtained as follows:

⎜ ⎟= ⎛
⎝

⎞
⎠

θ
y
x

atan2 ,e

e
1

= ′ ′θ θ θmin( , ),2 2 2

⎜ ⎟= ⎛
⎝

− − ⎞
⎠

−θ z l l θ
l

θacos cos ,e
3

1 2 2

3
2

(72)

where ⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

− ⎛
⎝

⎞
⎠

′ − + + + +

+ + −

−

+
θ asin atan2z l x y l l

l x y z l

z l

x y
2

( )

2 ( )

e e e

e e e

e

e e

1 2 2 2
2
2

3
2

2 2 2 1 2
1

2 2 ,

⎜ ⎟= ⎛
⎝

⎞
⎠

−′ + ′θ θ2atan2
x y

x2 2
e e

e

2 2
,and ≠x 0e .

In this paper, the end-effector motion is generated as the
following Fig. 6 (a). Fig. 6 (b) indicates the joint angles of each joint
based on (82), where =x mm400e = − +y mm tmm195 19.5e ,
and = −z y120 sin(0.016(e e + +mm mm195)) 130 .

To show the comparative control performance of the proposed
control scheme, two controllers are designed: the proposed dual closed-
loop finite-time sliding mode controller (PFSMC) and the dual closed-
loop sliding mode controller (SMC). The selected control gains between
two controllers were same except the gains of the finite-time control
term. In the simulation, the following control parameters were selected:

=k diag (0.5, 0.5voe , 0.5) =k diag (2,2,2)vo1 =k diag (10,10,5)vo2 =kvo3
diag (4,4,4) =k diag (1,1)vi1 =k diag (2.5, 2.5)vi2 =k diag (2,2)vi3 =k 0.2m1

=k 0.75m2 =k 0.9m3 =Λ diag (0.5, 0.5)vi =Λ diag (3,3,1)m =ε 0.1vi =ε 0.1vo
=ε 0.1vi =ε 0.1m =γ 0.5vo =γ 0.5vi =γ 0.5m =K diag (8.16, 0.33)mv

=K diag (1, 0)cv =K diag (0.15, 0.01)dv =K diag (0.5, 0.5, 0.5)mm
=K diag (0,0.063, 0.075)cm =K diag (0,5.53, 4.91)gm ,
=K diag (0.057, 0.56, 0.125)fm .kvo1kvo1, andkm1 relate the convergence

speed from any initial state point to the sliding surface. kvo2kvi2km2
ε ε,vi vo, andεmrelate staying in sliding surface of each state and de-
termine robustness of the controller. kvo3kvi3, km3γ ,vo γ ,vi andγm determine
the convergence speed to zero steady-state error. In this paper, the
controller gains were selected by these routes and can be varied ac-
cording to the change of the required specification. Some parameters
among these control parameters were a little changed in experiment.

4.1. Simulation application

Simulation for the mobile manipulator system as shown in Fig. 1
was executed to demonstrate the performance of the proposed dual
closed-loop finite time sliding mode controller. In simulation, all con-
trol gains were tuned for the nominal masses of each link given in
Table 1. To check robustness to uncertainty of the proposed control
system, the mass of the link 3, which corresponds to the end-effector of
the manipulator, increased as four times of its nominal value ( kg0.5 ).

In Fig. 7 (a), the tracking results of the WMP for the linear and
rotary posture command inputs are presented in the SMC and the
PFSMC systems. Fig. 7 (b)-(c) show the motion tracking errors, where
comparing with the results of both systems in Fig. 7, it is seen that the
proposed control system has reasonable tracking performance. In Fig. 8,
simulation results for manipulator system of the SMC and PFSMC sys-
tems are presented, where the PFSMC control system shows more ro-
bust control performance than those of the SMC system for the inertia

Fig. 11. Experimental results for manipulator system of the SMC and PFSMS systems. (a) Tracking result of link 1. (b) Tracking result of link 2. (c) Tracking result of
link 3. (d) Tracking error of link 1. (e) Tracking error of link 2. (f) Tracking error of link 3. (g) Control input of joint 1. (h) Control input of joint 2. (i) Control input of
joint 3.
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change of link 3 due to adding extra mass to end-effector. In the re-
sponse in link 3 shown in Fig. 8 (c), the steady-state error of the PFSMC
system is smaller than that of the SMS system.

4.2. Experimental application

In this section, experiment results for mobile manipulator of the
SMC system and PFSMC systems are presented for comparison of con-
trol performance. The hardware equipment of the proposed mobile
manipulator system is illustrated in Fig. 9, where the STM32F407 ARM
microprocessor was adopted as the main controller, DC motor system is
used in the mobile wheel drive system, and dynamixel motor system
[23] is built for manipulator control. Data acquisitions were carried out
through the wireless ZigBee communication method. The data of x and

y axes were obtained from 9-DOF Razor IMU sensor. 9-DOF IMU sensor
consists of gyroscope, accelerometer, and magnetometer. The odometry
information is used to estimate the mobile robot's position relative to its
origin. The odometry data of x and y axes were calculated by combining
the data of gyroscope, accelerometer, and encoder. The data ofθ1θ2,
and θ3were obtained from dynamixel encoder.

Experimental results of the WMP for the linear and rotary posture
command are presented in Fig. 10. The tracking results are shown in
Fig. 10 (a) and Fig. 10 (b), (c), and (d) show the tracking errors in each
axis, where it can be seen that the convergence time of the PFSMC
system is shorter than those of the SMC system. As shown in Table 2,
the values of the root mean square (RMS) error in the PFSMC system are
averagely 60% smaller over the SMC system.

Experimental results of manipulator for the link motion command

Fig. 11. (continued)
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given in Fig. 6 are presented in Fig. 11. Fig. 11 (a), (b), and (c) show the
tracking results of each link and the tracking errors are presented in
Fig. 11 (d), (e), and (f), where the convergence time of the PFSMC
system is also shorter than those of the SMC system. In addition, the
steady-state error of the PFSMC system in link 3 is smaller than that of
the SMC system. Thus, the PFSMC system is more robust over the SMC
system for uncertainty as well as having faster response. As shown in
Table 3, the values of the root mean square (RMS) error in the PFSMC
system are averagely 52% smaller over the SMC system. The control
torques in the joints are presented in Fig. 11 (g), (h), and (i).

5. Conclusion

In this paper, a dual closed-loop finite-time SMC system for the
three-wheeled and three-link mobile manipulator compared to the
conventional sliding mode control were proposed. The first achieve-
ment of this paper is to obtain fast and intuitive posture trajectory
generation of the WMP and robust joint tracking performance of ma-
nipulator. For this achievement, a sliding mode surface based virtual
velocity command in outer loop was generated instead of the perfect
velocity control of backstepping control. The second one is to derive
simpler decoupled dynamics between mobile platforms and manip-
ulators than full-coupled model based ones by considering the Euler-
Lagrange equation and partial Newtonian method. Next, as the third
achievement, two dynamic finite-time sliding mode controller in inner
loop of the WMP and manipulator systems were design to compensated
velocity gaps between the virtual velocity command and real velocity
and joint position tracking errors and finite-time control terms were
considered to obtain faster convergence time and stronger robustness.
Comparative simulation and experimental results with other control
systems supported the effectiveness of the proposed control method.
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