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The problem of intercepting a maneuvering target at a prespecified impact angle is posed in nonlinear zero-sum

differential games framework. A feedback form solution is proposed by extending state-dependent Riccati equation

method to nonlinear zero-sum differential games. An analytic solution is obtained for the state-dependent Riccati

equation corresponding to the impact-angle-constrained guidance problem. The impact-angle-constrained guidance

law is derived using the states line-of-sight rate and projected terminal impact angle error. Local asymptotic stability

conditions for the closed-loop system corresponding to these states are studied. Time-to-go estimation is not explicitly

required to derive and implement the proposed guidance law. Performance of the proposed guidance law is validated

using two-dimensional simulation of the relative nonlinear kinematics as well as a thrust-driven realistic interceptor

model.

Nomenclature

aI = lateral acceleration of the interceptor, m∕s2
aT = lateral acceleration of the target, m∕s2
C1 = set of continuously differentiable functions
D = drag, N
Di = induced drag, N
D0 = zero-lift drag, N
g = acceleration due to gravity, m∕s2
H = Hamiltonian of the game
H = Hamiltonian matrix
Ij = identity matrix of dimension j
J = objective functional of the related game
M = Mach number
mI = mass of the interceptor, kg
n = number of states
ne = number of controls of the evader/target
np = number of controls of the pursuer/interceptor
Q = state weighting matrix
Rl = l-dimensional vector space over real number field R
R1 = pursuer’s control weighting matrix
R2 = evader’s control weighting matrix
r = distance of the target from the interceptor, m
TI = interceptor’s thrust, N
u = commanded lateral acceleration by the interceptor, m∕s2
u = pursuer’s control vector
VI = velocity of the interceptor, m∕s
VT = velocity of the target, m∕s
v = commanded lateral acceleration by target, m∕s2
v = evader’s control vector
x = state vector
xI = x coordinate of interceptor’s position, m
xT = x coordinate of target’s position, m
zI = z coordinate of interceptor’s position, m
zT = z coordinate of target’s position, m
α = flight-path angle of the interceptor, rad
β = flight-path angle of the target, rad
λ = vector of costates
η = projected terminal impact angle, rad
ηC = desired impact angle, rad

θ = angle subtended by the line-of-sight to the reference
frame, rad

σ = line-of-sight rate, rad∕s
0i×j = matrix with i rows and j columns with all elements equal

to zero

I. Introduction

L ETHALITYof warheads against targets is enhanced at specific
impact angles while intercepting a target. Also, if the target

employs countermeasures, which are effective in limited range and
azimuthal zone, then controlling the interceptor impact angle can be
an effective means of avoiding such countermeasures. A growing
volume of literature in recent years marks the importance of impact-
angle-constrained guidance.
Proportional navigation-based guidance (PNG) laws and its

variants have been used to solve impact-angle control problems. The
problem of achieving all impact angles against a stationary target was
addressed in [1] following an idea of a two-stage PNG law. This
guidance law consists of an initial orientation phase where a
navigation constant of value less than 2 is used depending on the
initial engagement geometry and the desired impact angle, followed
by a switch over to a guidance phase where a navigation constant of
value greater than or equal to 2 is used to achieve the impact angle.
The same idea was later extended for impact-angle control guidance
against moving but nonmaneuvering targets in [2]. A guidance law
that provides the desired interception angle against a stationary or
slowly moving target was derived in [3] with combination of PNG
and a feedback of the difference between the desired interception
angle and the predicted interception angle using PNG. In [4], a
modified PNG law, with a time-varying bias component added
to the line-of-sight (LOS) rate, was proposed against a moving
nonmaneuvering target to impose a specified impact angle. Bymeans
of simulation, this guidance law was shown to exhibit good perfor-
mance against slowly maneuvering targets. Two-phase guidance-
scheme-based biased proportional navigation guidance laws were
proposed in [5,6] for impact-angle control against stationary targets.
Both of these guidance laws use only the LOS rate information.
A constant bias was used in [5], whereas Kim et al. [6] used two
time-varying biases and took into account both the terminal-angle
constraint and look-angle limitation to maintain the seeker lock-
on condition. An adaptive guidance approach in a proportional
navigation form was proposed in [7] that considered an aerodynamic
model of an interceptor for terminal intercept-angle constraint
problem against a stationary target. In [8], a passive guidance law that
requires LOS and LOS rate information but does not depend on range
was proposed to achieve a desired impact angle against a stationary or
slow-moving surface target. However, these guidance laws proposed
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in [1–8] were not designed considering targets with high maneuver
capabilities.
A guidance law called circular navigation guidance was proposed

in [9] that enables a missile to intercept a nonmaneuvering target at
the desired impact angle following a circular arc path. This guidance
law cannot be applied against targets maneuvering with high
magnitudes.
Based on linearized kinematics, guidance laws were derived using

linear optimal control theory for impact-angle control problems. In
[10], an optimal guidance law was formulated by minimizing a
quadratic cost function involving impact-angle error and miss
distance for an engagement between a reentry vehicle and a fixed or
slow-moving ground target. An optimal guidance law was proposed
in [11] for impact-angle control of an interceptor against a ship
maneuvering with a constant low magnitude and under the
assumption of a small initial heading error. Integrating a suboptimal
estimation filter was necessary to estimate different parameters and
relative states, which were required by the guidance law in [11]. In
[12], optimal control lawswere derived for lag-free and first-order lag
missile systems to intercept a stationary target at a desired impact
angle by optimizing a cost functional involving total control effort
and penalty terms on terminal states. In the same settings, Ryoo et al.
[13] used a time-to-go weighted energy cost function to shape an
interceptor’s trajectory. A guidance law, called generalized explicit
guidance law, based on linear optimal control theory and simple
linearized engagement kinematics, was proposed in [14] both for
two-dimensional and three-dimensional (3-D) engagement to
achieve design specifications on miss distance and final missile-
target relative orientation. The control usage and thus degree of
curvature in the trajectory were determined by a design coefficient
that needed to be preselected. Analytic solutions of a generalized
impact-angle-control guidance law for a first-order lag system were
investigated in [15] to scrutinize the effects of system lag on a first-
order missile system under the assumptions of a stationary or slow-
moving target. These analytical solutions gave insight into how
system lag and guidance coefficients affect terminal misses. Planar
optimal control-based interception laws against maneuvering targets
with known trajectories and constraints on initial and final flight-path
angles of the interceptor were presented in [16]. Linear quadratic
optimal (OGL-CTIA) and differential games guidance laws (LQDG-
CTIA), which enable interceptors to impose prespecified terminal
intercept angles to maneuvering targets, were presented in [17] based
on linearized models. Both the guidance laws performed well by
providing near-zero values of miss distance and intercept-angle error
against different kinds of target maneuvers in the simulations. OGL-
CTIA requires the target’s maneuver information, whereas LQDG-
CTIA does not. A closed-form guidance scheme was proposed in
[18] for a missile with time-varying acceleration constraint to satisfy
a terminal impact-angle constraint. The guidance lawwas formulated
for a maneuvering target based on linear quadratic optimal control
theory. The time-varying guidance gains, required to compute a
feedback-type command, were obtained from an iterative numerical
procedure. The concept of zero-effort collision triangle was
introduced in [19], and an impact-angle control optimal guidance law
was developed for missiles with arbitrary velocity profiles against
maneuvering targets based on the linearization of kinematics around
the zero-effort collision triangle. The guidance laws derived in [10–
15] did not consider maneuvering targets in their formulations.
Although maneuvering targets are considered in the optimal
guidance laws derived in [16–19], the target’s trajectory needs to be
known [16], or the target’s maneuver profile is required to be exactly
known [17,18], or it is assumed that the target position and velocity
are known and its future maneuver can be predicted without
error [19].
An issue related to the implementation of the guidance laws that

are derived from linearized kinematics is the assumption of
availability of a precise time-to-go estimate. Sensitivity analysis of
optimal control-based guidance laws toward time-to-go estimation
error shows that error in estimation of this quantity may lead to
degradation of performance [20,21]. However, with the exceptions of
[12,13], no such sensitivity analysis exists for the optimal guidance

laws derived in [10,11,14–19] or for LQDG-CTIA derived in [17],
which are related to impact-angle control problems. When an
interceptor starts on the collision course or with a slight deviation
from it, then time-to-go calculated as the ratio of range to closing
velocity provides a good estimate of time-to-go. However, as
observed in [12], this method does not take into account curvature of
the trajectory required for the impact-angle control. Therefore, this
method of estimating time-to-go does not reflect the effect of the
terminal impact-angle constraint on time-to-go. It was suggested in
[17] to use time-to-go estimate, as given in [12], when deviation from
the collision course is large. But in [12], time-to-go estimate for an
impact-angle-constrained optimal guidance law was derived
assuming a stationary or slow-moving target; hence, those time-to-
go estimates cannot be used against maneuvering targets. In [19], it
was also pointed out that the missile trajectory may largely deviate
from the collision triangle to satisfy the specific impact-angle
requirement. Hence, the assumption that an interceptor remains close
to the collision course in deriving linearized kinematics-based
guidance laws may not remain valid when a specific impact angle
between the missile and target velocity vectors is required. Thus, a
guidance law that is independent of time-to-go estimate, andwhich is
not derived from linearized kinematics based on near-collision course
engagement geometry assumption, is more desired for impact-angle
control against a maneuvering target. This is the primary motivation
behind the present paper.
Nonlinear optimal control-based guidance laws have also been

used in impact-angle-constrained guidance problems. These
guidance laws are expected to perform well even when the
engagement trajectory has large deviation from the collision course
because linearized kinematics are not assumed in their derivations. A
guidance algorithm was derived from a direct method of calculus of
variations for trajectory shaping and to meet several terminal
constraints in [22]. The final form of the trajectory optimization
problem was a nonlinear programming problem in a number of
parameters, which is solved numerically. This algorithm allows
combining different criteria into a single weighted compound
performance index, but the iterations required for the nonlinear
optimization steps may be quite demanding on an onboard processor.
The problem of impact-angle-constrained guidance against a
stationary target was treated as a nonlinear regulator problem and
solved using the state-dependent Riccati equation (SDRE) technique
in [23]. Starting with different firing angles, this guidance law was
shown to achieve its goals in finite time using the state weights as
functions of time-to-go. A nonlinear optimal guidance law was
derived in [24] to intercept a stationary target at the designated time
and angle while minimizing integral square control effort. A two-
point boundary-value problem was solved using a shooting method
to obtainvalues of some parameters thatwere required to compute the
guidance command. Two nonlinear suboptimal midcourse 3-D
guidance laws, based on the model predictive static programming
(MPSP)method and a closely relatedmodel predictive spread control
concept [25], were presented in [26] to enforce desired alignment
constraints in both elevation and azimuth in a hard-constraint sense
against incoming high-speed ballistic missiles. Guidance laws based
on MPSP and its variant were presented in [27,28], respectively, for
solving a finite-horizon nonlinear optimal control problem with hard
terminal constraints andwere applied to an impact-angle-constrained
problem against a stationary or slow-moving ground target.
Simulation results in [27,28] showed that this guidance law performs
well against slow-moving targetswith low levels ofmaneuver.MPSP
technique depends on a guess control history and an iterative process
for update of control to generate a trajectory with desired terminal
constraints. With improper choice of guess control history, this
technique may take a large number of iterations to converge to the
optimal solution. A near-optimal spatial midcourse guidance to a
predicted intercept point (PIP) under a terminal angular constraint
was presented in [29]. Numerical solutions were presented to the
nonlinear problem that includes an aerodynamic model for
minimizing the total squared acceleration and for maximizing the
total energy at the PIP. The guidance laws derived in [22–24,26,29]
do not take into account the target’s maneuver in their formulations,
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whereas the guidance laws developed in [27,28] depend on
information on the target’s maneuver.
Sliding-mode control (SMC) theory provides a robust control

method that can handle nonlinearity in system states, large modeling
errors, and uncertainties. A guidance law based on SMC approach
was presented in [30], which can be applied in head-on, tail-chase,
and head-pursuit engagement scenarios relative to a maneuvering
target’s flight direction. Analytical conditions for the existence of
these different engagement geometries were also discussed. This
guidance law requires estimation of target’s maneuver to implement
the equivalent control law. While deriving the proposed guidance
law, a “near collision course” assumption was not made, which
makes the guidance law applicable both in the midcourse and
endgame phases. Finite-time convergent guidance laws to intercept
stationary, constant velocity, and maneuvering targets at desired
impact angles were presented in [31] based on sliding mode control
theory. The problem of singularity at the terminal instant in [31] was
later removed in [32] using nonsingular terminal sliding mode
control theory. The proposed guidance law in [32] was shown to
impose desired impact angles with negligible miss distance. Though
target’s maneuver information is required to implement the
equivalent control law derived in [32], robustness of the guidance law
against a maneuvering target was shown by presenting simulation
results for a case where the target’s maneuver information was not
assumed to be known. An impact-angle-constrained guidance law
against a maneuvering target using partial integrated guidance and
control logic was proposed in [33] with the desired impact angle
defined along a prespecified LOS direction. A continuous sliding-
mode control law was designed in this work, integrating continuous
saturation function in the controller to stabilize a class of uncertain
nonlinear systems. Though sliding mode controllers are robust with
respect to uncertainties, most of these controllers are discontinuous
due to the use of the signum function, which may demand high rates
of control. Chattering is another difficulty during implementation of
these guidance laws. Use of the boundary-layer approach to remove
chattering may lead to a compromise on robustness. Moreover, a
guidance law derived from slidingmode control theory does not cater
to optimizing a cost functional like total control effort over the
engagement period.
Performance of optimal control-based guidance laws against

maneuvering targets [16–19,27,28] depends on how exact the
available information on target maneuver is. But the assumption on
the availability of exact information about a target’s maneuver is very
strict because the future course of action of the target, an independent
entity, cannot be predicted beforehand. SMC-based guidance laws
designed for impact-angle control need the target’s acceleration to be
known in the equivalent control components [30–32]. In the absence
of any information on target maneuver, SMC-based guidance laws
may perform well if the magnitude of the target’s acceleration and its
rate of variation remain within certain bounds. On the other hand,
differential games-based guidance laws do not need accurate
information about a target’s maneuver because they are designed to
withstand the worst-case maneuver of the target. In this work, the
problem of intercepting a maneuvering target at a specified intercept
angle is formulated as a pursuer–evader nonlinear zero-sum
differential game to obtain a guidance law that can intercept a
maneuvering target at a given impact angle, even without having any
information about the target’s maneuver, and can perform robustly
even when the engagement geometry is not close to the collision
course. It has been already discussed that independence from the
information requirement about an adversary’s strategy is a
characteristic of the strategies derived from zero-sum differential
games. To meet the second desired criterion, the guidance law needs
to be derived without linearizing or making any such assumptions on
the dynamics of the required states. The terms “pursuer” and
“interceptor” are interchangeably used throughout the text as well as
the terms “evader” and “target”. It was indicated in [17] that if the
initial geometry has a large deviation from the collision course, then
they use SDREmethod by linearizing the equations ofmotion at each
time step and then solve the associated SDRE. However, no details
were provided there. The idea of using SDRE method to differential

games to intercept a target at a specified impact angle was first
introduced in [34]. The Hamilton–Jacobi–Bellman–Isaacs (HJBI)
equation, the nonlinear partial differential equation that needs to be
solved to obtain the saddle-point strategies of a differential game, is
unlikely to yield any closed-form analytic solution in the nonlinear
multivariable case. Though there are different numerical methods for
approximate solutions, these methods may take several iterations to
reach a solution at each time step and may be computationally
complex [35]. Thus, these methods are hardly implementable online,
where solutions are required to be computed fast, like interceptor–
target engagement problems. On the other hand, well-developed
theory and computational tools for the Riccati equation [36] can be
used to obtain solutions to SDRE. The SDRE technique provides an
online implementable simple alternative to solving the Hamilton–
Jacobi–Bellman (HJB) equation arising in nonlinear regulator
problems [37]. A survey on SDRE design methodology and its
applications can be found in [37]. It is an effective design technique
for synthesizing feedback control in nonlinear regulator problems in
the presence of nonlinearities in the system states and offers design
flexibility through state-dependent weighting matrices. Apart from
the work in [23], SDRE method found its applications in other
interceptor–target engagement problems [38–41]. Instead of solving
the HJBI associated with the differential game formulation of the
impact-angle constraint problem, the present paper extends the idea
of SDRE method to obtain an online implementable feedback form
solution for the guidance problem. An analytic solution of the SDRE
corresponding to an admissible state-dependent coefficient form of
the underlying impact-angle control system is derived in this paper.
This simplifies online implementation of the derived guidance law
because it is no longer required to solve the SDRE at each time step. It
should be mentioned here that the guidance law obtained from the
derived analytic solution of the SDRE is not the exact saddle-point
solution, and hence it is suboptimal in nature. In the derivation of the
guidance law, the interceptor and the target are assumed to have
constant speeds. In practical scenarios, the speed of the interceptor
may not remain constant throughout the engagement duration. Thus,
the performance of the guidance law is also studied using a realistic
model of an interceptor against a maneuvering target. It is also tested
for the cases when initial engagement geometries have large
deviations from the collision courses.
The paper is organized as follows. In Sec. II, a general solution to

nonlinear pursuer–evader differential games using the SDREmethod
is presented. The guidance law for the terminal impact-angle-
constrained engagement problem is derived in Sec. III according to
the proposed framework. Section IV presents performance studies of
the developed guidance law based on the simulation results.
SectionVconcludes the paperwith a summary of themain results and
a discussion on future scope for research.

II. State-Dependent Riccati Equation Design Technique
for Differential Games

Consider a pursuer–evader game between a pursuer P and an
evader E starting at time t0. The game ends in favor of P if certain
states or parameters related to the engagement satisfy certain criteria
defined by a set B. To reach the set B or win, P chooses its control
vector u to regulate certain states to zero while minimizing its total
control effort consumption over the duration of the game. On the
other hand, E has to choose its controls v to steer those states away
from zero to evade while minimizing its own total control effort.
These two opposite objectives of the two noncooperating players can
be incorporated in a single objective function. The objective function
is assumed to be of the following form:

J � 1

2

Z
∞

t0

�xTQ�x�x� uTR1�x�u − γ2vTR2�x�v� dt (1)

The objective of P is to minimize J, whereas the objective of E is to
maximize J in Eq. (1). Note that the objective function contains state-
dependent weights.
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The state equations evolve as follows:

_x � f�x� �B�x�u�C�x�v; x�t0� � x0 (2)

In Eqs. (1) and (2), x ∈ Rn is the state vector, and u ∈ Rnp and
v ∈ Rne are control vectors of P and E, respectively.Q�·� ∈ Rn×n is
state weighting matrix and has to remain positive semidefinite for all
x. It is a design parameter as well. The control weight matrices
R1�·� ∈ Rnp×np andR2�·� ∈ Rne×ne have to remain positive-definite
for all x.
In Eq. (1), γ > 0 is a measure of P’s maneuvering capability

relative to that of E. The higher the value of γ is, the lower the
maneuvering capability of E is. Selection of γ should be based on the
maneuvering capability of the target.
Controls u and v are assumed to remain bounded in L2 norm, that

is,

Z
∞

0

uTu dt < ∞;
Z

∞

0

vTv dt < ∞ (3)

Though the interceptor guidance problem has finite-time character-
istics, there are precedences where the guidance laws have been
derived from the infinite-horizon formulations of the optimal control/
guidance problems and successfully applied [23,40,42]. For the
present nonlinear differential game problem, which shares a close
relation to nonlinear H∞ problem [43], the formulation over infinite
horizon can be justified in line with [44]. For a regulation problem,
the disturbance v is said to be locally attenuated by a factor γ if theL2

norm of y � �Ξ�x�x u�, where Ξ�x�TΞ�x� � Q�x�, satisfies the
following relation:

Z
tf

t0

yTy dt �
Z
tf

t0

�xTQ�x�x� uTu� dt ≤ γ2
Z
tf

t0

vTv dt (4)

for all t0 < tf < ∞ and for all v ∈ L2�t0; tf�. This condition in Eq. (4)
is satisfied if there exists an internal stabilizing controller such that
the following condition is satisfied:

Z
∞

t0

�xTQ�x�x� uTu� dt ≤ γ2
Z

∞

t0

vTv dt (5)

If there exists a solution of the max-min differential game problem,

max
v∈L2

min
u∈L2

Z
∞

t0

�xTQ�x�x� uTu − vTv� dt (6)

subject to the constraints in Eq. (2), then it satisfies the condition in
Eq. (5) as well as the condition in Eq. (4).
If f�x� ∈ C1 such that f�0� � 0, then f�x� can be factorized

(nonuniquely for n > 1) as f�x� � A�x�x. Then, Eq. (2) can be
expressed in the following state-dependent coefficient (SDC) form:

_x � A�x�x�B�x�u�C�x�v; x�t0� � x0 (7)

In order that an SDC form be an admissible one, the criteria of
pointwise controllability and pointwise observability need to be
satisfied. Definitions of pointwise stabilizability, pointwise
controllability, pointwise detectability, pointwise observability, and
pointwise Hurwitz will be used subsequently in line with [37]. Note
that the SDC form given in Eq. (7) is similar to the extended
linearization technique given in [45] and used in [17].
Because the problem is formulated as zero-sum differential games,

the concept of saddle-point equilibrium is pertinent here and is
stated next.
Definition 1: The strategies u� of P and v� of E are saddle-point

strategies of the game if, for any other strategy u used by P or any
other strategy v used by E, the following relation holds:

J�u�; v� ≤ J�u�; v�� ≤ J�u; v�� (8)

A player cannot get optimum benefit from a game if it deviates
from its optimal strategy while its opponent sticks to its optimal
strategy. Thus, each player should look to play his/her own optimal
strategy. If there exists a continuously differentiable, positive-valued,
stabilizing solution W: Rn → R to the HJBI equation

∇WTf�x� − 1

2
∇WT�B�x�BT�x� − γ−2C�x�CT�x��∇W

� 1

2
xTQ�x�x � 0; W�0� � 0 (9)

where ∇W � ∂W∕∂x, then the saddle-point strategies are obtained
to be u� � −BT�x�∇W�x�x and v� � γ−2CT�x�∇W�x�x [35]. It is
assumed here that R1 � Inp and R2 � Ine .
As it is already discussed in Sec. I, obtaining an analytic closed-

form solution to the associated HJBI partial differential equation in
Eq. (9) is almost impossiblewhen the state equations are nonlinear. In
the following, the SDRE method is presented for zero-sum
differential games. Then, the aspects of optimality and stability of the
proposed solution are discussed.
If there exists a unique, symmetric, positive-definite solution

P�x� ∈ Rn×n to the following matrix SDRE:

AT�x�P�x� � P�x�A�x� − P�x��B�x�R−1
1 �x�BT�x�

− γ−2C�x�R−1
2 �x�CT�x��P�x� �Q�x� � 0 (10)

then the strategy for P corresponding to the state x. is proposed as

u
•
� −R−1

1 �x�BT�x�P�x�x (11)

Theorem 1: In the general multivariable case, the proposed SDRE
nonlinear feedback stratgey for P, given in Eq. (11), satisfies the
following the first-order necessary condition:

u
•
� arg min

u
H (12)

where H is the Hamiltonian of the system.
Proof: The Hamiltonian associated with the nonlinear min-max

problem is given by

H � 1

2
xTQ�x�x� 1

2
uTR1�x�u −

γ2

2
vTR2�x�v

� λT�A�x�x�B�x�u�C�x�v� (13)

where λ ∈ Rn is the costate vector. For the nonlinear min-max
problem, let it be assumed that the costate vector λ is associated with
the state vector x by the following relation:

λ � P�x�x (14)

To minimize H, P’s control u has to satisfy

∂H∕∂u � 0 ⇒ u � −R−1
1 �x�BT�x�λ (15)

Substituting Eq. (14) in Eq. (15) yields the control in Eq. (11).
Remark 1: Similarly, E’s strategy to maximize H is obtained as

vworst � γ−2R−1
2 �x�CT�x�P�x�x (16)

Theorem 2: Assume that the functions A�x�, B�x�, C�x�, P�x�,
Q�x�, R1�x�, R2�x�, along with their gradients Axi�x�, Bxi�x�,
Cxi�x�, Pxi�x�, Qxi�x�, R1xi�x�, R2xi�x�, i � 1; 2; : : : n, are
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bounded in the neighborhoodΩ about the origin. Then, in the general
multivariable case, under asymptotic stability, as the state x is driven
to 0, the SDRE nonlinear feedback solution and its associated state
and costate trajectories asymptotically approach to satisfy the
equation _λ � −∂H∕∂x at a quadratic rate.
Proof: If Isaacs’s condition is satisfied [46], thenP’s strategy u

•
in

Eq. (15) and E’s strategy vworst in Eq. (16) constitute saddle-point
strategies if the associated state x and costate λ trajectories satisfy the
second necessary condition:

_λ � −∂H�u; v�∕∂x

� −
∂fT

∂x
λ − uT

∂BT

∂x
λ − vT

∂CT

∂x
λ −Qx −

1

2
xT

∂Q�x�
∂x

x

−
1

2
uT

∂R1�x�
∂x

u� γ2

2
vT

∂R2�x�
∂x

v (17)

For details of the derivation of the condition in Eq. (17), refer to
[47]. Differentiating Eq. (14) with respect to time yields

_λ � _P�x�x� P�x� _x (18)

When u � u
•
� −R−1

1 �x�BT�x�P�x�x and v � vworst �
γ−2R−1

2 �x�CT�x�P�x�x, then using Eqs. (7), (17), and (18), the
following expression is obtained for _Px:

_Px � xTPBR−1
1

∂BT

∂x
Px − xTPCR−1

2

∂CT

∂x
Px −

1

2
xT

∂Q
∂x
x

−
1

2
xTPBR−1

1

∂R1

∂x
R−1

1 BTPx

� γ−2

2
xTPCR−1

2

∂R2

∂x
R−1

2 CTPx

− �ATP� PA − PBR−1
1 BTP� γ−2CR−1

2 CTP�Q�x (19)

where ∂Q∕∂x, ∂R1∕∂x, ∂R2∕∂x, ∂AT∕∂x, ∂BT∕∂x, ∂CT∕∂x
generate tensors. The argument x is dropped for brevity. Imposing
Eq. (10) in Eq. (19) yields

_Px � xTPBR−1
1

∂BT

∂x
Px − xTPCR−1

2

∂CT

∂x
Px −

1

2
xT

∂Q
∂x
x

−
1

2
xTPBR−1

1

∂R1

∂x
R−1

1 BTPx

� γ−2

2
xTPCR−1

2

∂R2

∂x
R−1

2 CTPx (20)

Whenever the condition in Eq. (20) holds, the closed-loop solution
satisfies all the first-order necessary conditions. Even when the state
equations in Eq. (2) and objective function (1) together satisfy Isaacs’s
condition, the necessary condition inEq. (20) forgame theoretic saddle
point may not be satisfied for a given SDC parameterization in the
multivariable case. Under asymptotic stability, as x is driven to zero,
the second necessary condition for saddle point (_λ � −�∂H�u; v�∕∂x�)
is asymptotically satisfied at a quadratic rate. The rest of the proof is in
line with the one in [37]. □

Theorem 3:Assume that the SDC parameterization is chosen such
that A�·� ∈ C1 in the neighborhood Ω about the origin and that the
pairs fA�x�;B�x�g, fA�x�;C�x�g are pointwise controllable, and
fQ1∕2�x�;A�x�g is pointwise observable ∀ x ∈ Ω. For a given γ, if
∀ x ∈ Ω, a unique, symmetric, positive-definite solution P�x� exists
to the SDRE in Eq. (10) corresponding to the state x, then the
proposed SDRE nonlinear feedback control in Eq. (11) produces a
closed-loop solution that is locally asymptotically stable when
�a�v � 0 and �b�v � vworst � γ−2CT�x�P�x�x.
Proof: Without any loss of generality, it is assumed here that

R1�x� � Inp and R2�x� � Ine for all x.

Corresponding to the state vector x ∈ Rn, the unique, symmetric,
positive-definite solution to the SDRE in Eq. (10) is P�x�. With
u � −BT�x�P�x�x, the state equations take the following closed-
loop forms:

_x � A�x� − B�x�BT�x�P�x� � ACL�x�x (21)

_x � A�x� −B�x�BT�x�P�x� � γ−2C�x�CT�x�P�x� � ACLv�x�x
(22)

when v � 0 and v � γ−2CT�x�P�x�x, respectively.
In [48] (Theorem 4.8), it was proved that, under the assumptions

that the pairs fÂ; B̂g and fÂ; Ĉg are controllable and fQ̂1∕2; Âg is
observable, if the following algebraic Riccati equation:

ÂTΠ� ΠÂ − Π�B̂B̂T − γ−2ĈĈT�Π� Q̂ � 0 (23)

admits a minimal positive-definite solutionΠ��γ� for a given γ, then
the two feedback matrices AF � Â − B̂B̂TΠ� and AFv � Â −
�B̂B̂TΠ� − γ−2ĈĈTΠ�� are Hurwitz.
From this argument, it can be shown that the two feedbackmatrices

ACL�x� andACLv �x� are Hurwitz in a pointwise sense because, from
the assumptions that A�·�, B�·�, C�·� ∈ C1�Rn�, it follows that
P�x� ∈ C1�Rn�. Moreover, it also follows thatACL�x� ∈ C1�Rn� and
ACLv�x� ∈ C1�Rn�. Applying the mean-value theorem to ACL�x�
gives

ACL�x� � ACL�0� � �∂ACL�ζ�∕∂x�x (24)

where ζ is a point on the line segment joining the origin 0 and x
satisfying the previous equation, and (∂ACL�ζ�∕∂x) is a tensor.
Substituting ACL�x� from Eq. (24) into Eq. (21), the following
closed-loop dynamics is obtained:

_x � ACL�0�x�Ψ�x; ζ�kxk (25)

where Ψ�x; ζ� � �1∕kxk�xT�∂ACL�ζ�∕∂x�x, such that
limkxk→0Ψ�x; ζ� � 0.
In a neighborhood about the origin, local asymptotic stability is

obtained where the linear term having a constant stable coefficient
matrix ACL�0� dominates the higher-order term.
Under the same assumptions, local asymptotic stability can be

proved in a similar way when v � γ−2CT�x�P�x�x. □

Though conditions that ensure local asymptotic stability in a
neighborhood around the origin have been derived previously, it is
expedient to investigate if an equilibrium is globally asymptotically
stable. In the next theorem, the conditions for global asymptotic
stability are stated. The argument x is dropped for brevity.
Theorem 4: When an SDC parameterization is controllable and

observable, then the control given in Eq. (15) makes the equilibrium
at the origin globally asymptotically stable when v � 0 if _P < Q and
Q > 0 for all x.
Proof: This can be proved in the same line with [49]. □

III. Application to Impact-Angle-Constrained
Guidance Problem

In the engagement geometry shown in Fig. 1, VI and VT are the
velocity vectors, α and β are the flight-path angles (FPA), and u and v
are the control vectors perpendicular to the velocity vectors of the
interceptor and the target, respectively. The interceptor and the target
are assumed to have constant speeds. The line-of-sight (LOS) angle is
given by θ. The LOS rate _θ is designated by σ. The distance of the
target from the interceptor along the LOS is r. The interceptor is
required to intercept the target at an angle ηC. The kinematics of the
interceptor–target engagement system are given by the following
equations:

_r � Vr � −VT cos�β� θ� − VI cos�α − θ� (26)
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_θ � σ � �VT sin�β� θ� − VI sin�α − θ��∕r (27)

_α � u∕VI (28)

_β � v∕VT (29)

A. Guidance Principle

To ensure capture, the interceptor has to impose a hard constraint of
zero terminal miss distance and zero error on the terminal impact
angle. But a smart target will try to maximize the terminal distance as
well as the terminal impact-angle error in this case. Thus, the problem
is posed in a form where the interceptor tries to minimize terminal
miss distance along with terminal impact-angle error, whereas the
target tries to maximize these quantities. In this regard, two terms are
introduced in the following.
Definition 2 (zero-effort miss): The quantity zero-effort miss,

designated by rmiss, at an instant t is defined as the closest distance
between the interceptor and the target if, from the instant t onward,
both the interceptor and the target do not maneuver. The expression
for rmiss�t� comes out to be

rmiss�t� �
r2σ��������������������

_r2 � r2σ2
p (30)

The derivation of the expression for rmiss in Eq. (30) is standard and
can be found in [50].
Another quantity related to impact-angle-constrained guidance is

defined here in line with [17].
Definition 3 (projected terminal impact angle): The projected

terminal impact angle (PTIA) at an instant t is defined as the angle
between the velocity vectors of the interceptor and the target at the
instant of their closest proximity, if both the interceptor and the target
do not execute any further maneuvers from the time instant t onward:

η � �α − θ� � �β� θ� � α� β (31)

The error between PTIA η and the desired impact angle ηC is

ξ � η − ηC � α� β − ηC (32)

From the expression of rmiss in Eq. (30), it can be seen that
regulating σ to zero implies regulation of rmiss to zero value.
Regulation of σ to zerowhile keepingVr < 0 leads to interception. In
addition, ξ needs to be regulated to zero to achieve interception at the
desired impact angle. Based on the factor that the interceptor needs to
regulate σ and ξ to zero values to intercept the target at a desired
impact angle, the states are chosen as

x � � σ ξ �T (33)

The dynamics for the state σ is obtained as follows:

d

dt
�rσ� � d

dt
�r_θ� � d

dt
�VT sin�β� θ� − VI sin�α − θ��

_rσ � r_σ � _r _θ�r�θ � �VT cos�β� θ� � VI cos�α − θ��_θ

− _αVI cos�α − θ� � _βVT cos�β� θ�

_σ � �θ � −2_r _θ ∕r − u cos�α − θ�∕r� v cos�β� θ�∕r (34)

The dynamics of the state ξ is obtained as follows:

ξ � α� β − ηC _ξ � _α� _β � u∕VI � v∕VT (35)

Thus, the dynamic equations of the states take the following form:

_σ � 2�−Vr∕r�σ − u cos�α − θ�∕r� v cos�β� θ�∕r (36a)

_ξ � u∕VI � v∕VT (36b)

Note that, in this problem, u � u and v � v.

B. State-Dependent Coefficient Form of State Equations

The state equations given in Eq. (36) can be expressed in the SDC
form like Eq. (7), where

A�x� �
�
−2Vr∕r 0

0 0

�
(37)

B�x� �
�
− cos�α − θ�∕r

1∕VI

�
(38)

C�x� �
�
cos�β� θ�∕r

1∕VT

�
(39)

Note that the matrices B�x� and C�x� are not dependent on time-to-
go, unlike the formulation in [17].
The following notations will be used for the elements ofA,B, and

C to facilitate subsequent analysis:

a � A�1; 1� � −2Vr∕r (40)

b1 � B�1; 1� � − cos�α − θ�∕r; b2 � B�2; 1� � 1∕VI (41)

c1 � C�1; 1� � cos�β� θ�∕r; c2 � C�2; 1� � 1∕VT (42)

The terms (α − θ) and (β� θ), which occur in the elements of the
SDCmatricesA�x�,B�x�, andC�x�, have the following expressions
in terms of the states σ and ξ:

α − θ � tan−1
�

VT sin�ξ� ηc�
VT cos�ξ� ηc� � VM

�
− sin−1

�
rσ

ϑ

�
(43)

β� θ � tan−1
�

VM sin�ξ� ηc�
VM cos�ξ� ηc� � VT

�
� sin−1

�
rσ

ϑ

�
(44)

where ϑ �
�������������������������������������������������������������������
V2
T � V2

M � 2VMVT cos�ξ� ηc�
p

. The full SDC form
is obtained by substituting the expressions of (α − θ) and (β� θ)

Fig. 1 Engagement geometry with given intercept angle.
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from Eqs. (44) and (45), respectively, where they occur in the
elements of the SDC matrices.
In order that the SDC form be an admissible one, the pairs
fA�x�;B�x�g and fA�x�;C�x�g should be pointwise controllable.
The following matrices:

�B�x� A�x�B�x� � �
�
b1 ab1
b2 0

�
(45)

and

�C�x� A�x�C�x� � �
�
c1 ac1
c2 0

�
(46)

have rank 2 as long as ab1 ≠ 0 and ac1 ≠ 0, respectively. This
implies that pointwise controllability condition is satisfied for �α −
θ� ≠ π∕2 and �β� θ� ≠ π∕2, respectively, as long as Vr ≠ 0
and r ≠ 0.
The other condition of an SDC form to be admissible is that the pair
fQ1∕2�x�;A�x�g has to be pointwise observable. The 2 × 2 state
weighing matrix Q�x� is chosen to be of the following form:

Q�x� �
�
qσ�x� 0

0 qξ�x�

�
(47)

where qσ�x� and qξ�x� are the weights on the states σ and ξ,
respectively. With the choice of the weights qσ�x� > 0, and qξ�x� >
0 for all x, the following matrix:

�
Q1∕2�x�

Q1∕2�x�A�x�

�
�
� �����

qσ
p

0

0
�����
qξ
p�����

qσ
p

a 0

0 0

�
(48)

has rank 2, that is, the pointwise observability criterion is satisfied as
long as Vr ≠ 0 and r ≠ 0.
The domain over which the given SDC form remains admissible is

DSDC � fx: Vr ≠ 0; r ≠ 0; j�α − θ�j ≠ π∕2; j�β� θ�j ≠ π∕2g
(49)

C. State-Dependent Riccati Equation Solution Method

The SDRE-based impact-angle-constrained guidance lawdepends
on the solution of the SDRE given in Eq. (10), whereA�x�,B�x� and
C�x� now have the expressions in Eqs. (37–39), respectively. Here,
the conditions are investigated for existence of a positive-definite
solution to the Riccati equation in Eq. (10).
It is assumed here that R1�x� � 1 and R2�x� � 1. The

Hamiltonian matrix that is required to compute the solution of the
Riccati equation in Eq. (10) corresponding to a state vector x is

H�x� �
�

A�x� −F�x�
−Q�x� −AT�x�

�
(50)

where F � BBT − γ−2CCT .

The elements of the symmetric matrix F are

F�1; 1� � f1 � b21 − c21∕γ2 (51a)

F�1; 2� � F�2; 1� � f2 � b1b2 − c1c2∕γ2 (51b)

F�2; 2� � f3 � b22 − c22∕γ2 (51c)

The eigenvalues of H are

eig�H� �
� �������������

δ� Δ
p

;
������������
δ − Δ
p

;−
�������������
δ� Δ
p

;−
������������
δ − Δ
p �

(52)

where

δ � a2 � f1qσ � f3qξ (53)

Δ�
�������������������������������������������������������������������������������������������������������������������������������
a4�2a2f1qσ−2a2f3qξ�f21q2σ−2f1f3qσqξ�4f22qσqξ�f23q2ξ

q
(54)

where a is given by Eq. (40); b1, b2 are given by Eq. (41); and c1, c2
are given by Eq. (42).
The existence of the solution of the algbraic Riccati equation in

Eq. (10) imposes the condition that there should be no eigenvalue of
H on the imaginary axis [51]. The eigenvalues of the Hamiltonian
matrix H in Eq. (51) do not lie on the imaginary axis if

Δ > 0; δ > Δ (55)

The weights qσ and qξ have to be positive and should be selected to
satisfy Eq. (55) for all x. If the poles of H are too close to the
imaginary axis, then the Schur method, which is employed to
compute the solution to the SDRE, fails.
The solution to the SDRE, P�x�, is computed using Schur’s

algorithm [51,52]. The matrix composed of the eigenvectors
corresponding to the negative eigenvalues −

�������������
δ� Δ
p

and −
������������
δ − Δ
p

of H is

V �

2
664

V1

· · ·

V2

3
775 �

2
664
��δ − 2f3qξ�∕2� Δ∕2�

	 �������������
δ� Δ
p

− a


��δ − 2f3qξ�∕2 − Δ∕2�

	 ������������
δ − Δ
p

− a



�����������������������
δ∕2� Δ∕2

p ����������������������
δ∕2 − Δ∕2

p
��δ − 2f3qξ�∕2� Δ∕2� ��δ − 2f3qξ�∕2 − Δ∕2�

1 1

3
7775

The solution matrix P is computed from V1 and V2 as follows:

P � V2V
−1
1 �

�
p1∕Λ p2∕Λ
p2∕Λ p3∕Λ

�
(56)

where

p1 �
���
2
p
qσ

�
�δ − 2f3qξ − Δ�

�������������
δ� Δ
p

− �δ − 2f3qξ � Δ�
������������
δ − Δ
p �

(57a)
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p2 � 2
���
2
p
f2qσqξ

� �������������
δ� Δ
p

−
������������
δ − Δ
p �

(57b)

p3 � 4aqξΔ�
���
2
p
qξ

�
�δ − 2f3qξ � Δ�

������������
δ − Δ
p

− �δ − 2f3qξ − Δ�
�������������
δ� Δ
p �

(57c)

Λ � �δ − Δ�3∕2�δ� Δ�1∕2 − �δ − Δ�1∕2�δ� Δ�3∕2

�
���
2
p
a�δ − Δ�1∕2�δ − 2f3qξ � Δ�

−
���
2
p
a�δ� Δ�1∕2�δ − 2f3qξ − Δ� (57d)

For a given state vector x and a given value of γ, the matrix P�x� is
positive-definite with proper selection of the state weights qσ and qξ.
For positive-definiteness of P�x�, the following conditions should
hold well:

�p1 � p3�∕Λ > 0 and �p1p3 − p2
2� > 0 (58)

Thus, one needs to determine the conditions that need to be imposed
on γ, qσ , and qξ such that p1 � p3 has the same sign as that of Λ and
p1p3 − p2

2 > 0. The values of qξ that occur as the roots ofΛ give the
clue that if, for the given value of γ > 0, the following conditions are
satisfied:

f3 > 0; f1f3 − f22 < 0 (59)

then P�x� remains positive for the choices

0 < qσ�x� < qcrσ �x� (60)

0 < qξ�x� < qcrξ �x� (61)

where

qcrσ �x� � f3a2∕�f22 − f1f3� (62)

qcrξ �x� �
�f3a2 − qσf22 � f1f3qσ��2f22 − f1f3 � 2f2

���������������������
f22 − f1f3

p
�

f23�f22 − f1f3�
(63)

Note that qcrσ and qcrξ are continuous in the states σ and ξ. The
conditions in Eq. (59) along with the criteria on the weights in
Eqs. (62, 63) also guarantee that P�x� remains finite.
The domain over which P�x� remains positive-definite is denoted

by

DP� � fx: P�x� is positive definiteg (64)

Given an engagement geometry and a value of the parameter γ > 0,
where the state vector x ∈ DSDC, proposed SDRE-based solution
exists corresponding to the SDC formof Eq. (7) if the stateweightsqσ
and qξ satisfy the conditions in Eqs. (62) and (63), respectively, and
the engagement geometry satisfies the conditions in Eq. (59).

D. Derived Guidance Law

The impact-angle-constrained guidance law for the interceptor,
which will be henceforth referred to as SDRE-IACDGGL and
denoted by the subscript SDI, is computed according to Eq. (15) and
has the following form:

uSDI � G1σ �G2ξ (65)

where

G1 �
cos�α − θ�p1

rΛ
−
p2

VIΛ
(66)

G2 �
cos�α − θ�p2

rΛ
−
p3

VIΛ
(67)

with p1, p2, p3, and Λ being given by Eq. (57).
The domain where the guidance law can be applied while

complying with all the constraints is

DSDI � DSDC ∩ DP� (68)

where DSDC and DP� are shown in Eqs. (49) and (64), respectively.
In a neighborhood Ω ⊆ DSDI about the origin, local asymptotic

stability is obtained where the conditions discussed in Theorem 3 are
satisfied.

IV. Simulation Results

Performance of the guidance law derived in Sec. III.D is validated
here by means of simulation. The guidance law is derived assuming
ideal autopilots for both the interceptor and the target. However,
autopilots with first-order dynamics are considered for both the
interceptor and the target for simulation study. The simulations are
carried out for two kinds of interceptor models: 1) a constant-speed
interceptor model, and 2) a thrust-driven realistic interceptor model.
The derived guidance law is tested on both the interceptor models
against different kinds of target maneuver.
It is assumed here that α, VI , θ can be measured, and the quantities

β, VT , _θ are available from estimation. The time constants of the
interceptor’s autopilot and the target’s autopilot are denoted by τI and
τT , respectively. Interceptor’s autopilot output is denoted by aI, and
target’s autopilot output is denoted by aT. Acceleration due to gravity
is denoted by g, which has a value of 10 m∕s2. Initial flight-path
angles of the interceptor and the target are denoted by α0 and β0,
respectively. The performance of SDRE-IACDGGL is compared to
that of LQDG-CTIA. The LQDG-CTIA-based guidance law that is
used here for comparison purpose has been described in the
Appendix for the sake of completion. In an engagement scenario,
guidance commands for SDRE-IACDGGL and LQDG-CTIA are
computed considering the same value of the parameter γ. The
argument x is dropped from qσ and qζ for brevity. Note that the
engagement trajectories are plotted by stretching the y axis for clarity.

A. Constant-Speed Interceptor and Target

The equations of motion of the interceptor are as follows:

_xI � VI sin α (69a)

_zI � VI cos α (69b)

_α � aI∕VI (69c)

_aI � �u − aI�∕τI (69d)

where �xI; zI� is the �x; z� coordinates of the interceptor.
The equations of motion of the target are as follows:

_xT � −VT sin β (70a)

_zT � VT cos β (70b)
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_β � aT∕VT (70c)

_aT � �v − aT�∕τT (70d)

where �xT; zT� is the �x; z� coordinates of the target.
Interceptor and target speeds are considered to remain constant

throughout the engagement period and are considered to be VI �
600 m∕s and VT � 400 m∕s, respectively. The autopilot time
constants are τI � 0.1 s and τT � 0.1 s.

1. Nonmaneuvering Target

Though the guidance law is derived to intercept a maneuvering
target at a given impact angle, it should exhibit its capability against
nonmaneuvering targets as well. Three test scenarios are considered
that exhibit the efficacy of SDRE-IACDGGL.
Scenario 1: An initial geometry with a high heading error is

considered. The initial conditions for scenario 1 are shown in Table 1.
Initial FPA of the interceptor and the target are α0 � 70 deg and
β0 � 0 deg, respectively. The interceptor is supposed to hit the
nonmaneuvering target head on. The weights on the the states are
qσ � 105 and qξ � qcrξ ∕2, respectively. Both the guidance laws
SDRE-IACDGGL and LQDG-CTIA do not use the information that
the target is nonmaneuvering, which is reflected by selection of a
small value of 7 for the parameter γ. SDRE-IACDGGL misses the

target by a distance less than 1 m and an impact-angle error less than
1 deg. But LQDG-CTIA misses the target by more than 1450 m. The
engagement trajectories are shown in Fig. 2a. The acceleration
profiles in Fig. 2b show that LQDG-CTIA has failed to produce the
required lateral acceleration to obtain the required curvature in its
trajectory. PTIA profiles resulting from these guidance laws are
shown in Fig. 2c.
Scenario 2: LQDG-CTIA fails in scenario 1 because the chosen

value of the parameter γ is smaller than the value of γ∞, which has a
value of 8.3 in this case. The expression of γ∞ is given in Eq. (A8) in
the Appendix. If γ is chosen to have a value greater than that of γ∞,
then LQDG-CTIA also produces satisfactory results. The same
scenario given in scenario 1 is simulated with γ � 8.5 to check how
LQDG-CTIA performs with a higher value of γ. In this case,
both SDRE-IACDGGL and LQDG-CTIA yield a miss distance less
than 1 m and an impact-angle error less than 1 deg. Figures 3a–3c
show the engagement trajectories, guidance command, and PTIA,
respectively.
Scenario 3: Here, the performance of SDRE-IACDGGL is

compared to that of LQDG-CTIA in a scenario with a longer initial
range. The initial engagement scenario is shown in Table 1. Initial
FPA of the interceptor and the target are α0 � 70 deg and
β0 � 0 deg, respectively. Theweights on the the states are qσ � 105

and qξ � qcrξ ∕2, respectively. With γ � 7, SDRE-IACDGGL
imposes a miss distance less than 1 m and an error in impact angle
less than 1 deg, whereas LQDG-CTIA fails to produce enough
acceleration to hit this distant target and misses it by more than 5000
m. Both the scenarios have been simulated with a saturation level of
50g imposed on guidance command. Figures 4a–4c show the
engagement trajectories, guidance command, and PTIA, respec-
tively.
These results show that SDRE-IACDGGL performs well even for

low values of γ.

2. Step Maneuver by Target

In this case, the target is assumed to execute a stepmaneuverwith a
magnitude of 5g, and ηC � 0 deg. The interceptor and the target start

Table 1 Initial engagement scenarios
for nonmaneuvering target case

Entity x, m z, m V, m∕s
Scenario 1/2

Interceptor 0 0 600
Target 2,500 0 400

Scenario 3

Interceptor 0 0 600
Target 10,000 0 400
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Fig. 2 Engagement scenario for nonmaneuvering target (scenario 1).
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Fig. 3 Engagement scenario for nonmaneuvering target (scenario 2).
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from the initial conditions given in Table 1 for scenario 1, with
α0 � 0 deg and β0 � 0 deg, respectively. SDRE-IACDGGLyields
a miss distance less than 1 m and an error in impact angle less than
1 deg with qσ � 105, qξ � qcrξ ∕1.5, and γ � 7. LQDG-CTIA
guidance law also produces results with an equivalent accuracy. But
with a saturation limit of 45g on guidance command, the miss
distance and error in impact angle obtained by employing SDRE-
IACDGGL (≈2.8 m and≈3 deg, respectively) are smaller than those
obtained by employing LQDG-CTIA guidance law (≈8 m and
≈7.8 deg, respectively). The engagement trajectories as well as the
lateral acceleration of the interceptor and PTIA profiles for no
saturation and with saturation on the interceptor’s guidance
command have been plotted in Figs. 5 and 6, respectively.

3. Square-Wave Maneuver by Target

Two engagement scenarios are considered here with ηC � 0 deg.
In the first scenario, the target is considered to execute a square-wave
maneuver with a magnitude of 5g, time period of 3 s, and phase of
0 deg. The interceptor and the target start on a collision course from
the initial conditions given in Table 1 for scenario 1,with α0 � 0 deg

and β0 � 0 deg, respectively. With the choice of the weights
qσ � 105, qξ � qcrξ ∕3, and γ � 8.5, SDRE-IACDGGLyields a miss
distance less than 1 m and an impact-angle error less than 1 deg.
LQDG-CTIA guidance law yields a miss distance less than 1 m and
an impact-angle error of ≈1.7 deg. With a saturation level of 42g on
guidance command, SDRE-IACDGGL yields a miss distance of ≈1
mand an impact-angle error of≈2.3 deg. On the other hand, LQDG-
CTIA yields a miss distance of ≈2 m and impact-angle error of
≈11 deg. The engagement trajectories as well as the lateral
acceleration of the interceptor and PTIA profiles for no saturation and
with saturation on the guidance command have been plotted in Figs. 7
and 8, respectively.
In the second scenario, the interceptor and the target start from the

initial conditions given in Table 1 for scenario 1, with α0 � 70 deg
and β0 � 0 deg, respectively. The target is considered to execute a
square-wave maneuver with a magnitude of 5g, time period of 1 s,
and phase of 0 deg. SDRE-IACDGGL, with qσ � 105, qξ � qcrξ ∕2,
and γ � 8.5, yields a miss distance less than 1m and an impact-angle
error of ≈3 deg. LQDG-CTIA guidance law also yields a miss
distance less than 1 m, but the impact-angle error is ≈10 deg. With a
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Fig. 4 Engagement scenario for nonmaneuvering target (scenario 3).
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Fig. 5 Engagement scenario with no guidance command saturation: target executes step maneuver.
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Fig. 6 Engagement scenario with guidance command saturation: step maneuver by target.
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saturation level of 70g on the interceptor’s guidance command,
SDRE-IACDGGL yields a miss distance ≈1.5 m and impact-angle
error of ≈5 deg. LQDG-CTIA also produces an equivalent result
with a miss distance less than 2 m and an impact-angle error of
≈5 deg. The engagement trajectories as well as the lateral
acceleration of the interceptor and PTIA profiles for no-saturation
and with saturation on the interceptor’s guidance command have
been plotted in Figs. 9 and 10, respectively. Note that, in Fig. 9, the
lateral acceleration shows wiggles because there is no saturation.
These wiggles are at a very high value of lateral acceleration and are
automatically killed due to saturation in Fig. 10.

B. Realistic Interceptor Model and Constant-Speed Target

In practical scenarios, the speed of the interceptor may not remain
constant throughout the engagement period. Moreover, there will be
influence of drag. To take such factors into account, in this section, a
thrust-driven realistic interceptor model is considered. The target is
considered to have constant speed and the same model as given by
Eq. (70). The equations of motion of the interceptor are as follows:

_xI � VI cos α (71)

_zI � VI sin α (72)

_VI �
TI −D
mI

− g sin α (73)

_α � aI − g cos α

VI
(74)

_aI �
u − aI
τI

(75)

The interceptor’s autopilot time constant is τI � 0.1 s.
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Fig. 7 Engagement scenario with no guidance command saturation: target executes square-wave maneuver.
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Fig. 8 Engagement scenario with guidance command saturation: square-wave maneuver by target.
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Fig. 9 Engagement scenario: initial high heading error case.
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The aerodynamic drag acting on the interceptor is modeled as

D � D0 �Di (76)

D0 � Cd0 �Qs (77)

Di �
Ka2Im

2
I

�Qs
(78)

K � 1

πAre
(79)

�Q � 1

2
ρV2

I (80)

where Cd0 is the zero-lift drag coefficient, K is the induced drag
coefficient, Ar is the aspect ratio, e is the efficiency factor, ρ is the
atmosphere density, s is the reference area, and �Q is the dynamic
pressure.
The aerodynamic model and properties are taken from [53]. The

zero-lift drag coefficient and the induced drag coefficient are given
next:

Cd0 �

8>><
>>:

0.02 M < 0.93

0.02� 0.2�M − 0.93� 0.93 ≤ M < 1.03

0.04� 0.06�M − 1.03� 1.03 ≤ M < 1.1

0.0442 − 0.007�M − 1.1� M ≥ 1.1

(81)

and

K �
�
0.02 M < 1.15

0.02� 0.245�M − 1.15� M ≥ 1.15
(82)

whereM is theMach number. TheMach numberM has the following
expression:

M � VI�������������
1.4RT
p ; R � 288 (83)

where variation of temperature T with altitude zI is related as

T �
�
288.16 − 0.0065zI zI ≤ 11; 000 m

216.66 zI ≥ 11; 000 m
(84)

T has the unit of Kelvins.
The reference area s, used in Eq. (78), is assumed to be 1 m2, and

the thrust profile and mass of the vehicle are given by

TI �

8<
:
33; 000 N 0 ≤ t < 1.5 s

7500 N 1.5 s ≤ t < 8.5 s

0 N t ≥ 12 s

(85)

and

mI �

8<
:
135 − 14.53t kg 0 ≤ t < 1.5 s

113.205 − 3.331t kg 1.5 s ≤ t < 8.5 s

90.035 kg t ≥ 8.5 s

(86)

The atmospheric density is given by

ρ�zI� � 1.15579 − 1.058 × 10−4zI � 3.725 × 10−9z2I − 6.0

× 10−14z3I ; zI ∈ �0; 20000 m� (87)

1. Step Maneuver by Target

Scenario 1: The interceptor has to impose a terminal impact angle
of 0 deg to a target that executes a maneuver with a constant
magnitude of 5g. Engagement geometries at the initial instant, and at
the instant of closing the guidance loop, at tG � 1.5 s, are shown in
Table 2.
SDRE-IACDGGLyields amiss distance less than 1m and an error

in impact angle less than 1 deg, with qσ � 105, qξ � qcrξ ∕1.5, and
γ � 7. LQDG-CTIA also yields an equivalent performance.
Performances of both the guidance laws are tested with a saturation
level on the interceptor’s guidance command. With a saturation limit
of 65g on guidance command, miss distance is ≈2.7 m and error in
impact angle is less than 1.5 deg for SDRRE-IACDGGL. Miss
distance obtained by employing LQDG-CTIA is ≈2 m, and error in
impact angle is less than 1.5 deg in this case. The engagement
trajectories, guidance command of the interceptor, PTIA, and the
interceptor’s velocity profiles for no-saturation andwith saturation on
the interceptor’s guidance command have been plotted in Figs. 11
and 12, respectively. The velocity profiles of the interceptor, plotted
in Figs. 11d and 12d, do not show any significant difference.
Scenario 2: The interceptor has to impose a terminal impact angle

of 0 deg to a target that executes a maneuver with a constant
magnitude of 3g. Engagement geometries at the beginning and
closing of the guidance loop, at tG � 1.5 s, are shown in Table 3.
SDRE-IACDGGL yields a miss distance less than 1 m and an

error in impact angle less than 1 deg with qσ � 105, qξ � qcrξ ∕2, and
γ � 7. LQDG-CTIA also yields an equivalent performance.
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Fig. 10 Engagement scenario: initial high heading error case. Guidance command saturated.

Table 2 Scenario 1: realistic interceptor model
considered (target executes step maneuver)

t, s Entity x, m z, m V, m∕s FPA, deg

0 Interceptor 0 0 600 10
0 Target 5000 0 400 0
1.5 Interceptor 1099 180.95 879.6 8.84
1.5 Target 4402.9 49.125 400 10.03

12 AIAA Early Edition / BARDHAN AND GHOSE

D
ow

nl
oa

de
d 

by
 R

O
SE

-H
U

L
M

A
N

 I
N

ST
 O

F 
T

E
C

H
 o

n 
Fe

br
ua

ry
 1

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

09
40

 



Performances of both the guidance laws are tested with a saturation
level on the interceptor’s guidance command. With a guidance
command saturation of 30g, miss distance is ≈1.5 m and error in
impact angle is≈1 deg for SDRE-IACDGGL. LQDG-CTIAyields a
miss distance of≈7 m but an impact-angle error less than 1 deg. The

engagement trajectories as well as lateral acceleration of the
interceptor and PTIA profiles for no-saturation andwith saturation of
the interceptor guidance command have been plotted in Figs. 13 and
14, respectively. In this case, velocity profiles of the interceptor,
plotted in Figs. 13d and 14d, do not show any significant difference.
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Fig. 11 Scenario 1: realistic interceptor, no saturation on guidance command. Target executes step maneuver.
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Fig. 12 Scenario 1: realistic interceptor, guidance command saturated. Target executes step maneuver.
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2. Square-Wave Maneuver by Target

Scenario 1: In this case, the target executes a square-wave
maneuver with a magnitude of 5g and time period of 2.25 s. The
interceptor has to impose a terminal impact angle of 0 deg. The
engagement geometries at the start of the engagement, and at the time
of closing the guidance loop, at tG � 1.5 s, are shown in Table 4.
SDRE-IACDGGL in this case yields amiss distance less than 1mand

Table 3 Scenario 2: realistic interceptor model
considered (target executes step maneuver)

t, s Entity x, m z, m V, m∕s FPA, deg

0 Interceptor 0 0 600 30
0 Target 10,000 4,000 400 −45
1.5 Interceptor 968.16 546.1 877.85 ≈29
1.5 Target 9555.6 3597.3 400 ≈ − 39
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Fig. 13 Scenario 2: realistic interceptor, no saturation on guidance command. Target executes step maneuver.
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Fig. 14 Scenario 2: realistic interceptor, guidance command saturated. Target executes step maneuver.
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an error in impact angle less than 1 deg with qσ � 105, qξ � qcrξ ∕3,
γ � 7. LQDG-CTIA also yields an equivalent performancewithmiss
distance of≈1mand impact-angle error of≈1 deg.With a saturation
limit of 40g, SDRE-IACDGGL yields a miss distance less than 1 m
and an error of ≈2 deg in impact angle. On the other hand, LQDG-
CTIA misses the target by ≈3.5 m with an impact-angle error of
≈12 deg. The engagement trajectories, lateral acceleration of the
interceptor PTIA profiles, and interceptor’s velocity profiles for no-
saturation andwith saturation of the interceptor’s guidance command
have been plotted in Figs. 15 and 16, respectively. Figures 15d and
16d show that, in the saturation and no-saturation cases, respectively,
the velocity of the interceptor drops by ≈37 m∕s and ≈11 m∕s
for LQDG-CTIA relative to that of SDRE-IACDGGL in the
terminal phase.
Scenario 2: In this case, the target executes a square-wave

maneuver with a magnitude of 5g and time period of 10 s. The
engagement conditions are shown in Table 5 for the initial instant and
the instant of closing the guidance loop at tG � 1.5 s. The interceptor
has to impose a terminal impact angle of 0 deg. SDRE-IACDGGL in
this case yields a miss distance less than 1 m, but the error in impact
angle is ≈7 deg, with qσ � 105, qξ � qcrξ ∕2, γ � 7. LQDG-CTIA
also yields a miss distance less than 1 m and impact-angle error of
≈6.5 deg. With a saturation limit of 50g, SDRE-IACDGGLyields a
miss distance of≈5.5 m and an error in impact angle less than 1 deg.
LQDG-CTIAyields a miss distance of≈10 m and an error in impact
angle of ≈2.7 deg. The engagement trajectories as well as lateral
acceleration of the interceptor and PTIA profiles for no-saturation

andwith saturation of the interceptor’s guidance command have been
plotted in Figs. 17 and 18, respectively. Note that, Fig. 17d shows that
the interceptor’s velocity drops by≈50 m∕s at the terminal phase for
SDRE-IACDGGL with respect to that of LQDG-CTIA. However,
under saturation, significant difference in the interceptor’s velocity
profiles is not observed in Fig. 18d.

3. Interception at Different Angle Specifications

Next, the ability of the guidance law to intercept a maneuvering
target at different specified impact angles is verified. The target is
assumed to maneuver with a constant lateral acceleration of 5g. The
initial engagement geometry is considered to be the same as given in
Table 2. In all the cases, qσ� 105, qξ � qcrξ ∕2, and γ � 7.
Three different specifications of impact angle, ηC ∈ f−30; 45;

75 degg, are considered. Figures 19a–19c show the trajectories of the
engagements, lateral acceleration profiles of the interceptor, and
projected terminal impact angle over the engagement duration,
respectively. At the time of closing the guidance loop at tG � 1.5 s,
the engagement scenario is the same for all the cases as shown in
Table 2. The miss distances were less than 2 m, and terminal impact
angles were within error a margin of 2.5 deg of the specified angle in
all the cases.
Because the magnitudes of demanded accelerations are quite high,

a saturation level of 100g is imposed on the guidance command,
and the same scenarios are simulated. Figures 20a–20c show the
trajectories of the engagements, lateral acceleration profiles of the
interceptor, and projected terminal impact-angle profiles over the
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Fig. 15 Scenario 1: realistic interceptor, no saturation on guidance command. Square-wave maneuver by target.

Table 5 Scenario 2: realistic interceptor model,
square-wave maneuver by target

t, s Entity x, m z, m V, m∕s FPA, deg

0 Interceptor 0 0 600 30
0 Target 10000 4000 400 −45
1.5 Interceptor 968.16 546.1 877.85 ≈29
1.5 Target 9543 3612.5 400 ≈ − 35

Table 4 Scenario 1: realistic interceptor model,
square-wave maneuver by target

t, s Entity x, m z, m V, m∕s FPA, deg

0 Interceptor 0 0 600 10
0 Target 5000 0 400 0
1.5 Interceptor 1099 180.95 879.6 8.84
1.5 Target 4402.9 49.125 400 10.03
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engagement duration, respectively. The error in impact angle is
≈3 deg for ηC � −30 deg, but this error quantity remains within
1 degwhen ηC ∈ f45; 75 degg. For ηC � −30 deg, miss distances is
≈4 m, whereas it is less than 1 m for ηC ∈ f45; 75 degg.
It is observed that the greater the shaping of curvature of the

required trajectory is, which is governed by the specified impact

angle and maneuver of the target, the greater the magnitude
of the peak acceleration demand is. To achieve interception of the
target at the specified impact angle, at a fair precision level, the
interceptor should have adequatemaneuverability advantage over the
target such that it can exert sufficient acceleration to rectify its
path.
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Fig. 17 Scenario 2: Realistic interceptor, no saturation on guidance command. Square-wave maneuver by target.
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Fig. 16 Scenario 1: Realistic interceptor, guidance command saturated. Square-wave maneuver by target.
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V. Conclusions

A closed-form guidance law based on nonlinear differential games
theory that allows an interceptor to impose a prespecified impact
angle on interception of a maneuvering target has been presented in

this paper. The state-dependent Riccati equation method based
solution presented here for nonlinear zero-sum differential games
takes care of the target’s maneuver as well as the nonlinear nature of
the state equations in the impact-angle-constrained guidance
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Fig. 18 Scenario 2: Realistic interceptor, guidance command saturated. Square-wave maneuver by target.
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Fig. 19 Interception at different impact angles: realistic interceptor model, no guidance command saturation.
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Fig. 20 Interception at different impact angles: realistic interceptor, guidance command saturated.
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problem. Conditions are studied for local asymptotic stability of the
closed-loop system when the target does not maneuver and for the
case when it employs a worst-case strategy. In simulation study, the
proposed guidance law is found to achieve small values of miss
distance and impact-angle error against targets with different
maneuver profiles if an interceptor is fortified with large maneuver
advantage over a target. With suitable choice of the weights, the
guidance law derived in this paper performs quite well and excels
over the linear quadratic differential games-based constrained
terminal impact-angle guidance law in those cases where initial
engagement geometries have large deviations from the collision
courses. Performance of the proposed guidance law is also tested
using a realistic interceptor model in simulation. Performance of the
derived guidance law is not vulnerable to unpredictability of a target’s
maneuver. Implementation of the derived guidance law does not
depend on time-to-go estimate explicitly. An interesting study would
be to investigate if the proposed method can be further refined to
obtain a solution more close to the optimal one and ensures global
asymptotic stability even in the presence of the target’s maneuver.
Another direction of study might be to consider the aerodynamic
model of the interceptor and analytically derive the guidance law
using the technique presented in this paper.

Appendix: Linear Quadratic Differential Games

In [17], LQDG was derived, assuming integral cost on u2⊥ and v2⊥,
where u⊥ and v⊥ are the components of the lateral acceleration vector
of the interceptor and the target, respectively, perpendicular to the
LOS. Howevr, note that the objective function used in this work to
derive the SDRE-based guidance law includes integral cost on u2 and
v2. Therefore, for comparative study, an equivalent derivation of the
LQDG-CTIA that includes integral cost on u2 and v2 is used here. As
it has been derived in [17], the equivalent guidance law for the
interceptor takes the following form:

u � N1Z1∕t̂2go �N2VIZ2∕t̂go (A1)

where

N1 �
6γ2�−kIγ2V2

T � 2kIV
2
I � kTVIVT�

Δ∞
LQDGCTIA

(A2)

N2 � −
2γ2VT�VTγ2k2I � 3VIkIkT � 2VTk

2
T�

Δ∞
LQDGCTIA

(A3)

Δ∞
LQDGCTIA � −γ4k2I V2

T � 4γ2k2I V
2
I � 6γ2kIkTVIVT � 4γ2k2TV

2
T

− k2TV2
I (A4)

which is obtained from the following objective functional:

J � qZEM
2

Z2
1�tf� �

qZEAE
2

Z2
2�tf� �

1

2

Z
tf

t0

�u2 − γ2v2� dt (A5)

by setting qZEM → ∞ and qZEAE → ∞. These weights emphasize on
perfect interception and zero error in terminal impact angle,
respectively. The terms kI and kT correspond to (α − θ) and (β� θ) at
t0, respectively. The statesZ1 andZ2 are zero-effortmiss distance and
zero-effort angle error, respectively, which are given by the following
expressions:

Z1 � −Vrt̂2goσ; Z2 � α� β − ηC (A6)

Time-to-go t̂go is estimated as

t̂go � −r∕Vr (A7)

Thegreatest positive root ofΔ∞
LQDGCTIA is designated by γ∞. It has the

following expression:

γ∞ � �kIVI � kTVT � �k2I V2
I � kIkTVIVT � k2TV2

T�1∕2�∕�kIVT�
(A8)

A conjugate point does not exist if the value of the parameter γ is
greater than γ∞.
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