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a b s t r a c t

In this paper, binary variants of the ant lion optimizer (ALO) are proposed and used to select the optimal feature
subset for classification purposes in wrapper-mode. ALO is one of the recently bio-inspired optimization tech-
niques that imitates the hunting process of ant lions. Moreover, ALO balances exploration and exploitation using
a single operator that can adaptively searches the domain of solutions for the optimal solution. Binary variants
introduced here are performed using two different approaches. The first approach takes only the inspiration of
ALO operators and makes the corresponding binary operators. In the second approach, the native ALO is applied
while its continuous steps are threshold using suitable threshold function after squashing them. The proposed
approaches for binary ant lion optimizer (BALO) are utilized in the feature selection domain for finding feature
subset that maximizing the classification performance while minimizing the number of selected features. The
proposed binary algorithms were compared to three common optimization algorithms hired in this domain
namely particle swarm optimizer (PSO), genetic algorithms (GAs), binary bat algorithm (BBA), as well as the
native ALO. A set of assessment indicators is used to evaluate and compare the different methods over 21 data
sets from the UCI repository. Results prove the capability of the proposed binary algorithms to search the feature
space for optimal feature combinations regardless of the initialization and the used stochastic operators.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

In many applications, data set contains relevant, irrelevant, or
redundant features that degrade the classification performance and
have an enormous number of features [1]. Feature selection is ap-
plied for a better understanding of the data and selecting the subset
of significant features. The aim of feature selection is to improve the
classifier performance and obtain comparable or even best classifi-
cation accuracy than use the complete feature set [2]. In addition,
feature selection is formulated as a multi-objective problem that
minimizes the size of selected features and maximizes the classifi-
cation accuracy [3,4]. There are two different approaches of feature
selection that evaluate the quality of the selected features: wrapper-
based and filter-based. More precisely, a wrapper-based approach
uses a machine learning technique to search through the space of
possible solutions [1]. On the other hand, a filter-based approach
searches the feature space based on data-dependent criteria rather
than classification-dependent criteria as in the wrapper approach [5].

The search space size is exponentially increasing according to
the number of features in a given data set. In practice, the
and Computer Science,
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exhaustive search techniques are impossible to get the optimal
solution and still suffer from stagnation in local optima [6].
Therefore, evolutionary computation (EC) algorithms are the al-
ternative for solving these limitations and their global search
capability. EC techniques are inspired by nature, social behavior,
and biological behavior of animals or birds or insects like: bat, gray
wolf, ant lion, moth-flame, etc. in a group [7]. EC algorithms were
employed to search adaptively the feature space for the optimal
subset using a number of search agents that communicate in a
social behavior to reach the optimal solution [8,11]. In EC algo-
rithms, it is essential to have a convenient balance between ex-
ploration and exploitation. In bee swarm algorithms, different be-
haviors of the bees give us the possibility to create the robust
balancing technique between exploration and exploitation [9,10].

Genetic algorithms (GAs) were the first evolutionary based
algorithm introduced in the literature and developed based on the
natural process of evolution through reproduction [12,13]. In
particle swarm optimizer (PSO), each solution is considered as a
particle that is characterized by position, fitness, and speed vector
[14,15]. Artificial fish swarm (AFS) is a robust stochastic algorithm
based on the fish movement and its intelligence during the
process of searching for the food [16]. The ant lion optimizer
algorithm (ALO) is a comparatively recent EC algorithm that is
computationally less expensive than some another EC techniq-
ues [17].
for feature selection, Neurocomputing (2016), http://dx.doi.org/
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A modified binary version of PSO algorithm to deal with the
binary optimization problems [18] and feature selection problems
[19]. The search space in BPSO is considered as a hyper-cube; a par-
ticle may be seen to move to nearer or farther corners of the hyper-
cube by flipping various numbers of bits. Furthermore, a binary ver-
sion of the gravitational search algorithm (BGSA) is used for feature
selection problem [20]. A binary version of the bat algorithm (BBA) is
applied for feature selection purposes, where the search space is
modelled as an n-cube. It is important to assign for every bat a set of
binary coordinates that indicate if this feature will belong to the final
feature set [21]. Lots of research used a binary version of bio-inspired
algorithms [22–25]. In addition, many bio-inspired algorithms are
used to solve different problems and applications [26–30].

The aggregate aim of this paper is to propose new binary ver-
sions of ant lion optimizer (BALO) for feature selection that selects a
minimal number of features and obtaining comparable or even best
classification accuracy from using all features and conventional
feature selection techniques. The remainder of this paper is orga-
nized as follows: Section 2 presents the background of continuous
ant lion optimizer (cALO) and the proposed new binary versions of
ant lion optimizer (BALO) are described in Section 3. Section 4
presents the proposed BALO algorithms’ feature selection, while the
experimental results with discussions are reported in Section 5.
Finally, conclusions and future work are stated in Section 6.
2. Preliminaries

2.1. Continuous ant lion optimizer (cALO)

Ant lion optimizer (ALO) is a recently proposed optimization
algorithm that was proposed by Mirjalili [17]. The ALO algorithm
mimics the hunting mechanism of ant lions in nature. The fol-
lowing two subsections discuss the inspiration and operators of
the artificial ant lion optimizer.
2.1.1. Inspiration
Mostly, ant lions (doodlebugs) hunt in larvae and their adulthood

period is for reproduction. An ant lion larva digs a cone-shaped hole
(trap) in the sand by moving along a circular path and throwing out
sands with its huge jaw. After that, the larvae hide underneath the
bottom of the cone and waits for insects (preferably ant) to be
trapped in the trap. Once the ant lions found out that the prey is in
the trap, they are trying to catch it by throwing sand toward the trap
to bury the prey. When the prey is caught into the jaw, it is pulled
under the soil and consumed. After consuming its prey, they throw
the leftovers outside the trap and amend it for the next hunting
process. Another interesting behavior observed during the lifestyle of
the ant lion is that the size of the trap is influenced by two things:
level of hunger and shape of the moon [17].

2.1.2. Artificial ant lion
Based on the above description of the ant lion hunting process, a

set of conditions can be formulated as in the following items [17]:

� Preys and ants are moving around the search space by using
different random walks.

� Ant lions can build traps proportional to their fitness.
� Ant lion with the larger hole has the higher probability of

catching ants.
� The range of random walk is adaptively decreased to simulate

the sliding ants toward the ant lions.
� If an ant becomes fitter than an ant lion that means it is caught

and pulled under the sand by the ant lion.
� An ant lion repositions itself to the latest caught prey and re-

builds the trap after each hunt.

According to the above conditions ant lion optimizer can be
described as in Algorithm 1.

Algorithm 1. Continuous ant lion optimizer algorithm (CALO).
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3. The proposed binary ant lion optimizer (BALO).

The ALO algorithm is a recently proposed bio-inspired algorithm
that mimics the hunting mechanism of ant lions in nature [17]. ALO
has very competitive results in terms of improved exploration, local
optima avoidance, exploitation, and convergence [17]. As mentioned in
[17], the ALO has superior performance on the majority of unimodal
and multimodal test functions. The algorithm benefits from high
exploitation and convergence rates. The main reason for the high
exploitation and convergence speed is due to the adaptive boundary
shrinking mechanism and elitism. On the other hand, the high ex-
ploration of ALO is due to the employed random walk and roulette
wheel selection mechanisms that allow for population diversity.

These attractive properties motivate using it in other applications
such as wrapper-based feature selection. In the wrapper-based fea-
ture selection, the classifier is trained and evaluated at each in-
dividual optimization step and hence it requires a very intelligent
optimization to minimize the number of evaluations. In addition, the
search space is expected to be very nonlinear with many local
minima. Continuous optimization algorithms are commonly used to
find feature combinations that maximizing the classifier perfor-
mance where search agents are positioned in a d-dimensional search
space at positions in [0, 1]. Binary optimization algorithms; if ap-
propriately used in a similar manner, use much limited search space
as two values are only allowed for each dimension {0, 1} and hence is
expected to perform better. Furthermore, the binary operator is ex-
pected to be much simpler than continuous counterparts.

In the continuous version of ant lion optimizer (cALO), ant lions
and ants continuously change their positions to whatever point in
the space. In feature selection problem, the solutions are restricted
to the binary {0, 1} values which motivate using a binary version of

E. Emary et al. / Neuroco
the cALO. In this paper, a novel binary ant lion optimizer (BALO) is
proposed for the feature selection purposes.

In cALO, we can observe that each individual ant updates its
position by averaging two positions. One of them is obtained by
performing random walk with suitable step size around the elite
ant lion while the other position is obtained by performing ran-
dom walk around a selected ant lion. Therefore, we applied the
same search manner in the binary version of the ALO where the
average operator is replaced by crossover operation between two
binary solutions. The two solutions to be crossover are either ob-
tained by performing mutation as a local search around ant lions
with suitable mutation rate; called BALO-1, or as a threshold
continuous random walk around ant lions with suitable step size;
called BALO-S and BALO-V. The following two subsection explains
in detail the BALO-1 and BALO-S (BALO-V) as two proposed binary
versions of ALO.

3.1. Binary ant lion optimizer – approach 1 (BALO-1)

In this approach, each individual ant changes its position ac-
cording to Eq. (1). The crossover operation between the two binary
solutions obtained from random walk around the elite and the
selected ant lion as depicted in Algorithm 2:

= ( ) ( )+X Crossover RW RW, , 1i
t 1

1 2

where ( )Crossover x y, is suitable cross over between solutions x
and y, and RW1 and RW2 are binary vectors representing the effect
of elite ant lion and a random selected ant lion respectively.

Algorithm 2. The algorithm of binary ant lion optimizer – ap-
proach 1 (BALO-1).
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T e average operator used in the cALO is used to attract the ant

toward the ant lion trap cone and hence it is the main operator for
exploration or global search. Here, the crossover operator replaces
the average operator used in the cALO where both operators
achieve global searching/exploration. The crossover operator is a
simple operator to obtain an intermediate solution between two
solutions. The used crossover is simple stochastic crossover that
switches between the two input vector with same probability as
given in the following equation:

⎪
⎪⎧⎨
⎩

=
( ) ≥

( )
x

x if rand

x otherwise

0.5

2

d
d

d

1

2

where xd is the output from crossover at dimension d between
vectors x xandd d

1 2 .
RW1 represents the attraction of an ant by the elite ant lion that

is represented by a random walk around the elite continuous-va-
lued ant lion with suitable step size. And it can be represented by
stochastic mutation around a selected ant lion with suitable mu-
tation rate around the binary-valued elite ant lion in the binary
version as given in Eq. (3). RW2 represents the attraction by the
other ant lions and is performed by applying stochastic mutation
around an ant lion in the binary mode that is selected by the
roulette wheel selection method:

⎪

⎪⎧⎨
⎩= ≥

( )
x x if rand r

rand otherwise

1

2 3
out
d in

d

where xout
d is the d dimension value for the output vector from

mutation, xind is the input vector to be mutated, rand rand1, 2 are
two random numbers drawn from a uniform distribution in the
range [0, 1], and r is the mutation rate. It worth mentioning that r
is linearly decremented with iteration number ranging from 0.9 to
0 as shown in the following equation:

= + − ( − )
− ( )

⁎
r

i
Iter Max

0.9
0.9 1

1 4

where r is the mutation rate at iteration i and, IterMax is the total
number of iterations to run the optimization.

3.2. Binary ant lion optimizer – approach 2 (BALO-S and BALO-V)

In this approach; depicted in Algorithm 3, each individual ant
changes its position to the crossover between two binary solutions
as in the past approach namely RW1, RW2 as in Eq. (2). Further-
more, the first solution RW1 is obtained by performing random
walk around the elite ant lion (E) while the second solution
RW2 is obtained by performing random walk around a selected
ant lion (S).

The two solutions resulted from the random walk have con-
tinuous values and hence must be converted into the corre-
sponding binary solutions. The conversion is performed by ap-
plying squashing of continuous values in each dimension using
either S-shaped function or V-shaped function [32]. Transfer func-
tions or squashing functions define the probability of changing
position vector's elements from 0 to 1 and vice versa. Transfer
functions force the search agents to move in a binary space. The
sigmoidal (S-shaped) function is a common transfer function as
given in Eq. (5). The hyperbolic tan function is a common example
of V-shaped functions as given in Eq. (6):

=
+ ( )− ( )

y
e

1

1
,

5
d

x10 d

= | | ( )y xtanh 6d d
ase cite this article as: E. Emary, et al., Binary ant lion approaches
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where xd is the continuous-valued input vector at dimension d
defined as −RW E1 or −RW S2 with E current elite solution and S is
a solution obtained from the roulette wheel selection and yd is the
output of sigmoidal function at dimension d.

The output from the squashing function; sigmoidal or hyper-
bolic tan is still in continuous mode and hence it has to be thre-
sholded to reach the binary-valued one. The sigmoidal or hyper-
bolic tan functions are mapping the infinite input smoothly to a
finite output. Commonly stochastic threshold is applied as in
Eq. (7) to reach the binary solution in the case of sigmoidal func-
tion. In the case of using V-shaped function, the threshold into
binary is performed using Eq. (8):

⎪

⎧⎨
⎩= ≥

( )
+Ant y rand

otherwise

1 if

0 7
d
t

d
1

⎪
⎪⎧⎨
⎩

=
<

( )

+Ant
sel y rand

org otherwise

if

8
d
t d

t d

d
t

1

where rand is a random number drawn from a uniform distribu-
tion ∈[ ]0, 1 , +Antd

t 1 is the updated binary position in dimension d at
iteration t, and yd is defined in Eq. (7) in the case of S-shaped and
in Eq. (6) in the case of V-shaped and Sel is either S or E solution
before applying the random walk.

Random walks are all based on the following equation:

( ) = [ ( ( ) − ) ( ( ) − ) …

( ( ) − )] ( )

X t cumsum W t cumsum W t

cumsum W t

0, 2 1 ; 2 1 ; ;

2 1 , 9T

1 2

where cumsum calculates the cumulative sum, T is the maximum
number of iteration, t shows the step of a randomwalk, andW(t) is
a stochastic function defined in the following equation:

⎧⎨⎩( ) = >
≤ ( )

W t
rand
rand

1 if 0.5
0 if 0.5, 10

where t shows the step of randomwalk and rand is a random number
generated with uniform distribution in the interval of [ ]0, 1 .

In order to keep the randomwalks inside the search space, they
are normalized using the following equation (min–max normal-
ization):

=
( − ) × ( − )

( − )
+

( )
X

X a d c
b a

c ,
11

i
t i

t
i i i

t

i
t

i
i

where ai is the minimum of the random walk of i-th variable, bi is
the maximum of random walk in i-th variable, cti is the minimum
of i-th variable at t-th iteration, and dti indicates the maximum of i-
th variable at t-th iteration.

The radius of ants's random walks hypersphere is decreased
adaptively; see Eqs. (12)–(14):

= ( )c
c
I

, 12
t

t

= ( )d
d
I

, 13
t

t

where ct is the minimum of all variables at t-th iteration, dt is the
maximum of all variables at t-th iteration, and I is a ratio that is
defined in the following equation:

= ( )I
t
T

10 , 14
w

where t is the current iteration, T is the maximum number of
iterations, and w is a constant defined based on the current
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iteration (w¼2 when >t T0.1 , w¼3 when >t T0.5 , w¼4 when
>t T0.75 , w¼5 when >t T0.9 , and w¼6 when >t T0.95 ). Basi-

cally, the constant w can adjust the accuracy level of exploitation.

Algorithm 3. The algorithm of binary ant lion optimizer – ap-
proach 2 (BALO-S and BALO-V).
Ple
10.
4. Binary ant lion optimizer applied for feature selection

In this section, the two proposed binary optimizer approaches
are exploited in feature selection for classification problems. For a
feature vector sized N, the different feature combinations would
be 2N which is a huge space of features to be searched exhaustively.
Therefore, ALO is used to search adaptively the feature space for
best feature subset. The best feature subset is the one with mini-
mum classification error rate and the minimum number of selected
features. The fitness function is used in BALO to evaluate individual
search agents is shown in the following equation:

αγ β↓ = ( ) + ∣ ∣
∣ ∣ ( )

Fitness D
R
C

,
15R

where γ ( )DR is the classification error rate given classifier R relative
to selection decision D of the features, R is the length of selected
feature subset, C is the total number of features in the data set, α
ase cite this article as: E. Emary, et al., Binary ant lion approaches
1016/j.neucom.2016.03.101i
and β are two parameters corresponding to the importance of
classification quality and subset length, α ∈ [ ]0, 1 and β α= −1 .

K-Nearest neighbor (KNN) [31] is a simple common method
used for classification purposes and is adopted here as a simple
candidate classifier to evaluate the fitness function. KNN classifier

 

 

is determined based on the minimum distance from the query
instance to the training samples.
5. Experimental results and discussion

5.1. Data description

Twenty-one data sets in Table 1 from the UCI machine learning
repository [33] are used in the experiments and comparison of
results. The data sets were selected to have various numbers of
features and instances as representatives of various kinds of issues
that the proposed technique will be tested on. In addition, we
selected a set of respectively high dimensional data to ensure the
performance of optimization algorithms in huge search spaces.
The individual data set is divided in a cross-validation [34] manner
for evaluation. In K-fold cross-validation, −K 1 folds are used for 
for feature selection, Neurocomputing (2016), http://dx.doi.org/
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Table 2
Parameter setting for experiments.

Parameter Value(s)

K for cross validation 10
M The number of runs 5

No. of search agents 8
No. of iterations ( <Dimension 100) 70
No. of iterations ( ≥Dimension 100) 200
Problem dimension Number of features in the data
Search domain in binary algorithms {0, 1}
Search domain in continuous algorithms [0, 1]

Crossover fraction in GAs 0.8
Inertia factor of PSO 0.1
Individual-best acceleration factor of PSO 0.1
α parameter in the fitness function 0.99
β parameter in the fitness function 0.01
Qmin Frequency minimum for BBA 0
Qmax Frequency maximum for BBA 2
A Loudness for BBA 0.5
r Pulse rate for BBA 0.5

Table 1
List of data sets used in the experiments.

DS No. Name No. of features No. of samples

1 BreastEW 30 569
2 Breastcancer 9 699
3 CongressEW 16 435
4 Exactly 13 1000
5 Exactly2 13 1000
6 HeartEW 13 270
7 IonosphereEW 34 351
8 KrvskpEW 36 3196
9 Lymphography 18 148
10 M-of-n 13 1000
11 SonarEW 60 208
12 SpectEW 22 267
13 Tic-tac-toe 9 958
14 Vote 16 300
15 WaveformEW 40 5000
16 WineEW 13 178
17 Zoo 16 101
18 Clean1 166 476
19 Clean2 166 6598
20 PenglungEW 325 73
21 Semeion 265 1593

E. Emary et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎6

 

 

training and validation and the remaining fold is used for testing.
This process is repeated M times. Hence, the individual optimizer
is evaluated ⁎K M times for individual data set. The data for
training, validation, and testing are equally sized. Training part is
used to train the used classifier through optimization and at the
final evaluation. Validation part used to assess the performance of
the classifier at the optimization time. Testing part is used to
evaluate the finally selected features given the trained classifier.

A wrapper approach for feature selection is used in this paper
based on KNN classifier. KNN is utilized in the experiments based on
trial and error basis where the best choice of ( = )K 5 is selected as best
performing on all the data sets [31]. Through the training process,
every search agent represents one feature subset. The training set is
used to evaluate the KNN on the validation set throughout the opti-
mization to guide the feature selection process, while test data are
kept hidden from the optimization and is used for final evaluation.

The proposed feature selection methods are benchmarked with
particle swarm optimizer (PSO) [35], genetic algorithms (GAs)
[36], continuous ALO, and binary bat algorithm (BBA) [37] for
evaluation. The global and optimizer-specific parameter setting is
outlined in Table 2. All the parameters are set either according to
domain-specific knowledge as the α and β parameters of the used
fitness function, or based on trial and error on small simulations
and common in the literature such as the rest of parameters.

5.2. Evaluation criteria

In each run of individual optimizer, the following measures are
calculated on test data:

� Classification error rate: is an indicator that describes how ac-
curate is the classifier given the selected feature set and is for-
mulated in the following equation:

∑ ∑_ = ( )
( )= =

Avg Perf
M N

Unmatch C L
1 1

, ,
16j

M

i

N

i i
1 1

where M is the number of runs for the optimization algorithm,
N is the number of points in the test set, Ci is the classifier
output label for data point i, Li is the reference class label for
data point i, and Unmatch is a function that outputs 0 when the
two input labels are the same and outputs 1 when they are
different.
Please cite this article as: E. Emary, et al., Binary ant lion approaches
10.1016/j.neucom.2016.03.101i
� Statistical mean: is the average of solutions acquired from run-
ning an optimization algorithm for different M running. Mean
represents the average performance a given stochastic optimizer
can be formulated in the following equation:

∑=
( )=

⁎Mean
M

g
1

,
17i

M
i

1

where ⁎gi is the optimal solution resulted from run number i.
� Statistical standard deviation (std): is a representation for the

variation of the obtained best solutions found for running a
stochastic optimizer for M different runs. Std is used as an in-
dicator for optimization algorithm stability and robustness as
given in the following equation:

∑=
−

( − )
( )⁎Std

M
g Mean

1
1

,
18

i 2

� Average selection size: represents the average size of the selected
features to the total number of features and can be formulated
as in the following equation:

∑_ =
( )

( )=

⁎AVG Selection
M

size g

D
1

,
19i

M i

1

where size(x) is the number of values for the vector x, and D is
the number of features in the original data set.

� Wilcoxon rank sum test: proposed by Frank Wilcoxon [39] as a
non-parametric test. The test assigns ranks to all the scores
considered as one group, and then sums the ranks of each
group. The null hypothesis is that the two samples come from
the same population, so any difference in the two rank sums
come only from sampling error. The rank sum test is often
described as the non-parametric version of the t test for two
independent groups. It tests the null hypothesis that data in x
and y vectors are samples from continuous distributions with
equal medians, against the alternative that they are not.

� Average computational time: is the run time for a given optimi-
zation algorithm in millisecond that calculated over the differ-
ent runs as given in the following equation:

∑=
( )=

T
M

RunTime
1

,
20

o
i

M

o i
1

,

where M is the number of runs for the optimizer O, and
RunTimeo i, is the computational time in millisecond for optimi-
zer o at run number i.  
for feature selection, Neurocomputing (2016), http://dx.doi.org/
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Fig. 1. Sample initial ant lion positions using small, mixed and large initialization
with 10 search agents and 4 dimensions.
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The proposed binary versions of ant lion optimizer are com-
pared against common optimizers namely particle swarm opti-
mizer (PSO), genetic algorithms (GAs), continuous ALO, and binary
bat algorithm (BBA) with three different initialization methods
namely Mixed initialization, small initialization, and large in-
itialization [40].

The different initialization methods differ from one to another
as follows:

� Population diversity: the capability of an optimizer to produce
variants of the given initial population is an important property
that identifies a given algorithm.

� Closeness to expected optimal solution: the optimizer capability
to efficiently search the space for the optimal solution is must
for a successful optimizer and hence it is intended to force the
initial search agents to be apart from the expected optimal so-
lution or close to the expected optimal solution.

� Resemblance to forward and backward selection: forward and
backward selections are two common methods for the selection
of features where each has its own strengths and weaknesses
and hence we would like to assess the initialization impact on
the feature selection process.

Three initialization methods are used to ensure capability of
the different optimizers to converge from different initial posi-
tions. Small initialization method is expected to test the global
searching capability of a given optimizer as the initial search
agents’ positions are commonly apart from the expected optimal.
Therefore, the optimizer has to use global search operators to
derive better solutions.

Large initialization is expected to assess the local searching
capability of a given optimizer as the search agents’ positions are
commonly closer to the expected optimal solution and hence just
local searching operators are required to reach the optimal solution.
Both the small and large initialization methods have less population
diversity and hence the algorithm has to evolve the population
adaptively to reach the optimal solution. Moreover, the small in-
itialization method resembles the forward selection method while
the large initialization method resembles the backward selection
method which is very common in feature selection. Forward se-
lection starts with an empty feature set and evolves with adding the
extra feature by selecting the feature that achieves the highest
classification performance and so on. On the other hand, backward
selection starts with all the features selected; then candidate fea-
tures are sequentially removed from the feature pool while it in-
creases the classification performance. Forward selection usually
selects a smaller number of features and is computationally less
than backward selection. But, when the best feature subset contains
a relatively large number of features, backward selection has a lar-
ger chance to obtain the best solution [41].

Mixed initialization is the case where some search agents are close
to the expected optimal solution and the other search agents are apart
and hence it provides much diversity of the population as the search
agents are expected to be apart from each other. In addition, this in-
itialization method takes both the merits of small and large initializa-
tion. This initialization method is expected to evaluate the global
searching in cases of the diverse population. Some details about the
three different initialization methods are provided as follows:

1. Small initialization: search agents are initialized with the minor
number of randomly selected features. Therefore, if the number
of agents is less than the number of features we will see that
each search agent will have a single dimension with 1. Of
course, the optimizer will search for feature(s) to be set to 1 to
enhance the fitness function value as in the standard forward
selection of features; as shown in Fig. 1(a).
Please cite this article as: E. Emary, et al., Binary ant lion approaches
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2. Large initialization: search agents are set to it is maximum. In
this case, we find a solution with all dimensions set to 1 and
solutions with all dimensions set to 1 except for single random
dimension set to 0. Of course, the optimizer will search for
feature(s) to be removed while keeping or enhancing the fitness
function value; as shown in Fig. 1(c).

3. Mixed initialization: where half the search agents are initialized
using the small initialization and the rest is initialized using the
large initialization method; as shown in Fig. 1(b).

5.3. Numerical results and discussion

Table 3 outlines the statistical mean fitness values obtained
from the different optimization algorithms on the different data
sets using small initialization. We can remark that although small
initialization forces the initial search agents to be far away from
the optimal solution, the proposed BALO-1 can reach global/near
optimal solution. We can see that in almost half the data sets the
BALO-1 reaches a better solution rather than the traditional con-
tinuous algorithm namely GAs and PSO and even the modern
optimizers such as ALO. A similar remark can be seen by re-
marking the performance of BALO-V. Therefore, in general, we can
see that the proposed binary algorithms with ALO inspiration have
better performance in comparison to continuous ones as well as
binary algorithms such as BBA. The limited search space can in-
terpret the enhanced performance in the case of binary algorithms
which eases the problem and balance between global and local
searching that is inspired by the ALO principles. The balance be-
tween global and local search helps the optimization algorithm to 
for feature selection, Neurocomputing (2016), http://dx.doi.org/
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Table 4
Statistical mean fitness measure calculated on the different runs for all optimizers
on the different data sets using mixed initialization.

DS No. ALO BALO-1 BALO-S BALO-V BBA GAs PSO

1 0.028 0.021 0.021 0.022 0.024 0.028 0.026
2 0.029 0.026 0.031 0.030 0.025 0.032 0.033
3 0.039 0.030 0.039 0.037 0.033 0.039 0.056
4 0.299 0.144 0.278 0.144 0.252 0.298 0.302
5 0.236 0.234 0.234 0.234 0.235 0.235 0.239
6 0.132 0.128 0.133 0.122 0.128 0.141 0.152
7 0.115 0.111 0.123 0.108 0.101 0.113 0.117
8 0.052 0.033 0.054 0.034 0.043 0.049 0.052
9 0.176 0.125 0.156 0.139 0.149 0.172 0.203
10 0.070 0.006 0.083 0.010 0.050 0.079 0.086
11 0.173 0.132 0.175 0.154 0.135 0.154 0.219
12 0.150 0.111 0.137 0.109 0.126 0.137 0.154
13 0.228 0.213 0.221 0.213 0.219 0.235 0.234
14 0.050 0.045 0.047 0.040 0.038 0.055 0.058
15 0.214 0.200 0.222 0.195 0.210 0.210 0.211
16 0.011 0.011 0.011 0.006 0.009 0.014 0.017
17 0.109 0.069 0.094 0.079 0.084 0.088 0.143
18 0.126 0.105 0.146 0.126 0.144 0.137 0.160
19 0.039 0.037 0.041 0.036 0.040 0.041 0.041
20 0.212 0.226 0.246 0.219 0.226 0.246 0.280
21 0.029 0.027 0.034 0.028 0.031 0.035 0.035

Table 3
Statistical mean fitness measure calculated on the different runs for all optimizers
on the different data sets using small initialization.

DS No. ALO BALO-1 BALO-S BALO-V BBA GAs PSO

1 0.024 0.024 0.021 0.023 0.037 0.025 0.037
2 0.033 0.026 0.033 0.029 0.095 0.032 0.066
3 0.041 0.035 0.040 0.033 0.121 0.043 0.057
4 0.301 0.139 0.270 0.240 0.312 0.306 0.308
5 0.238 0.232 0.234 0.237 0.242 0.238 0.242
6 0.143 0.130 0.130 0.124 0.233 0.135 0.165
7 0.100 0.113 0.115 0.101 0.151 0.100 0.121
8 0.045 0.037 0.052 0.034 0.427 0.065 0.240
9 0.173 0.138 0.152 0.078 0.237 0.176 0.223
10 0.091 0.020 0.097 0.045 0.300 0.062 0.208
11 0.175 0.142 0.171 0.141 0.329 0.176 0.163
12 0.154 0.116 0.137 0.122 0.202 0.139 0.206
13 0.236 0.213 0.221 0.224 0.323 0.232 0.289
14 0.052 0.038 0.048 0.028 0.100 0.050 0.100
15 0.208 0.200 0.224 0.201 0.454 0.232 0.275
16 0.008 0.006 0.011 0.017 0.115 0.023 0.059
17 0.094 0.079 0.079 0.049 0.317 0.138 0.168
18 0.127 0.124 0.150 0.109 0.285 0.146 0.159
19 0.039 0.037 0.042 0.038 0.092 0.043 0.047
20 0.205 0.219 0.233 0.273 0.472 0.239 0.266
21 0.031 0.026 0.033 0.030 0.099 0.032 0.070

Fig. 2. Statistical mean fitness averaged for the different optimizers on the different data sets using the different initializers.

Table 5
Statistical mean fitness measure calculated on the different runs for all optimizers
on the different data sets using large initialization.

DS No. ALO BALO-1 BALO-S BALO-V BBA GAs PSO

1 0.028 0.023 0.024 0.021 0.030 0.027 0.029
2 0.031 0.026 0.034 0.022 0.051 0.028 0.036
3 0.040 0.036 0.044 0.032 0.074 0.045 0.063
4 0.295 0.223 0.254 0.143 0.314 0.298 0.300
5 0.235 0.233 0.233 0.229 0.245 0.233 0.234
6 0.144 0.124 0.133 0.124 0.159 0.133 0.150
7 0.103 0.097 0.115 0.107 0.144 0.120 0.131
8 0.059 0.035 0.054 0.033 0.085 0.048 0.063
9 0.170 0.155 0.173 0.135 0.206 0.176 0.206
10 0.099 0.011 0.102 0.020 0.126 0.069 0.107
11 0.168 0.147 0.166 0.156 0.291 0.166 0.221
12 0.142 0.114 0.137 0.114 0.172 0.139 0.150
13 0.228 0.213 0.213 0.217 0.239 0.223 0.233
14 0.043 0.040 0.047 0.037 0.087 0.048 0.075
15 0.215 0.203 0.219 0.200 0.226 0.210 0.216
16 0.017 0.008 0.009 0.009 0.020 0.017 0.017
17 0.094 0.079 0.084 0.089 0.193 0.089 0.164
18 0.110 0.108 0.147 0.120 0.216 0.144 0.170
19 0.038 0.036 0.042 0.034 0.048 0.041 0.041
20 0.205 0.226 0.233 0.226 0.349 0.239 0.301
21 0.028 0.026 0.035 0.025 0.046 0.036 0.035

Table 6
Statistical standard deviation measure for the different optimizers on the different
data sets averaged over the three initializers.

DS No. ALO BALO-1 BALO-S BALO-V BBA GAs PSO

1 0.007 0.008 0.007 0.009 0.008 0.008 0.008
2 0.006 0.006 0.004 0.005 0.008 0.008 0.017
3 0.024 0.016 0.017 0.015 0.019 0.021 0.028
4 0.023 0.109 0.034 0.101 0.041 0.020 0.023
5 0.014 0.013 0.015 0.016 0.014 0.013 0.015
6 0.023 0.019 0.021 0.022 0.033 0.021 0.037
7 0.028 0.028 0.028 0.027 0.033 0.028 0.032
8 0.012 0.008 0.008 0.009 0.018 0.023 0.033
9 0.038 0.038 0.030 0.030 0.058 0.028 0.054
10 0.044 0.023 0.034 0.032 0.029 0.049 0.029
11 0.045 0.037 0.044 0.053 0.061 0.046 0.061
12 0.041 0.032 0.032 0.030 0.029 0.040 0.037
13 0.023 0.019 0.020 0.020 0.032 0.024 0.034
14 0.022 0.013 0.023 0.014 0.033 0.017 0.031
15 0.009 0.006 0.010 0.009 0.037 0.014 0.021
16 0.011 0.012 0.014 0.008 0.026 0.020 0.027
17 0.076 0.062 0.071 0.060 0.074 0.086 0.089
18 0.027 0.016 0.018 0.026 0.019 0.026 0.029
19 0.003 0.004 0.002 0.004 0.004 0.003 0.004
20 0.081 0.084 0.082 0.110 0.083 0.085 0.096
21 0.009 0.009 0.010 0.009 0.010 0.010 0.020
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Table 8
Classification error rate of the different optimizers on test data on the different data
sets using small initialization method.

DS No. ALO BALO-1 BALO-S BALO-V BBA GAs PSO Full

1 0.024 0.024 0.021 0.038 0.037 0.025 0.037 0.037
2 0.033 0.026 0.033 0.062 0.095 0.032 0.066 0.056
3 0.041 0.034 0.040 0.059 0.121 0.043 0.057 0.083
4 0.301 0.139 0.270 0.282 0.312 0.306 0.308 0.327
5 0.238 0.232 0.233 0.252 0.242 0.238 0.242 0.257
6 0.143 0.130 0.130 0.198 0.233 0.135 0.165 0.185
7 0.100 0.113 0.115 0.168 0.151 0.100 0.121 0.134
8 0.045 0.037 0.052 0.038 0.427 0.065 0.240 0.085
9 0.173 0.138 0.152 0.224 0.237 0.176 0.223 0.317
10 0.091 0.020 0.097 0.055 0.300 0.062 0.208 0.151
11 0.175 0.142 0.171 0.298 0.329 0.175 0.163 0.380
12 0.154 0.116 0.137 0.193 0.202 0.139 0.206 0.169
13 0.236 0.213 0.221 0.244 0.323 0.232 0.289 0.285
14 0.052 0.038 0.048 0.082 0.100 0.050 0.100 0.123
15 0.208 0.200 0.224 0.219 0.454 0.232 0.275 0.232
16 0.008 0.006 0.011 0.079 0.115 0.023 0.059 0.068
17 0.094 0.079 0.079 0.169 0.317 0.138 0.168 0.208
18 0.127 0.124 0.150 0.190 0.285 0.146 0.159 0.206
19 0.039 0.037 0.042 0.045 0.092 0.043 0.047 0.049
20 0.205 0.219 0.233 0.356 0.472 0.239 0.266 0.342
21 0.031 0.026 0.033 0.043 0.099 0.032 0.070 0.043

Table 7
Average selection size of different optimizers on all the data sets averaged on all
initialization methods.

DS No. ALO BALO-1 BALO-S BALO-V BBA GAs PSO

1 0.519 0.494 0.537 0.537 0.562 0.525 0.574
2 0.519 0.419 0.513 0.443 0.530 0.494 0.541
3 0.271 0.313 0.399 0.309 0.483 0.413 0.604
4 0.406 0.436 0.517 0.462 0.487 0.385 0.427
5 0.457 0.338 0.547 0.333 0.410 0.457 0.449
6 0.650 0.474 0.573 0.504 0.564 0.551 0.543
7 0.335 0.431 0.350 0.399 0.500 0.469 0.556
8 0.688 0.457 0.559 0.468 0.552 0.551 0.591
9 0.417 0.361 0.475 0.432 0.509 0.512 0.531
10 0.684 0.483 0.675 0.513 0.556 0.624 0.564
11 0.286 0.443 0.444 0.462 0.493 0.456 0.506
12 0.508 0.391 0.543 0.389 0.462 0.492 0.422
13 0.691 0.654 0.617 0.630 0.580 0.722 0.623
14 0.285 0.326 0.292 0.330 0.431 0.427 0.535
15 0.847 0.593 0.654 0.567 0.611 0.707 0.657
16 0.526 0.444 0.470 0.389 0.470 0.504 0.547
17 0.441 0.361 0.458 0.396 0.441 0.389 0.472
18 0.424 0.434 0.426 0.469 0.513 0.475 0.568
19 0.640 0.483 0.510 0.496 0.531 0.574 0.632
20 0.111 0.393 0.329 0.374 0.474 0.427 0.460
21 0.498 0.459 0.468 0.465 0.553 0.549 0.515

Table 9
Classification error rate of the different optimizers on test data on the different data
sets using small mixed method.

DS No. ALO BALO-1 BALO-S BALO-V BBA GAs PSO Full

1 0.028 0.021 0.021 0.021 0.024 0.028 0.026 0.037
2 0.029 0.026 0.031 0.030 0.025 0.032 0.033 0.056
3 0.039 0.030 0.039 0.037 0.033 0.039 0.056 0.083
4 0.299 0.144 0.277 0.144 0.252 0.298 0.302 0.327
5 0.236 0.234 0.234 0.234 0.235 0.234 0.239 0.257
6 0.131 0.128 0.133 0.122 0.128 0.141 0.152 0.185
7 0.115 0.111 0.123 0.108 0.101 0.113 0.117 0.134
8 0.052 0.033 0.054 0.034 0.043 0.049 0.052 0.085
9 0.176 0.125 0.156 0.139 0.149 0.172 0.203 0.317
10 0.070 0.006 0.083 0.010 0.050 0.079 0.086 0.151
11 0.173 0.132 0.175 0.154 0.135 0.154 0.219 0.380
12 0.150 0.110 0.137 0.109 0.125 0.137 0.154 0.169
13 0.228 0.213 0.221 0.213 0.219 0.235 0.234 0.285
14 0.050 0.045 0.047 0.040 0.038 0.055 0.058 0.123
15 0.214 0.200 0.222 0.195 0.210 0.210 0.211 0.232
16 0.011 0.011 0.011 0.006 0.008 0.014 0.017 0.068
17 0.109 0.069 0.094 0.079 0.084 0.088 0.143 0.208
18 0.126 0.105 0.146 0.126 0.144 0.137 0.160 0.206
19 0.038 0.037 0.041 0.036 0.040 0.041 0.041 0.049
20 0.212 0.226 0.246 0.219 0.226 0.246 0.280 0.342
21 0.029 0.027 0.034 0.028 0.031 0.035 0.035 0.043

Table 10
Classification error rate of the different optimizers on test data on the different data
sets using large initialization method.

DS No. ALO BALO-1 BALO-S BALO-V BBA GAs PSO Full

1 0.028 0.023 0.024 0.021 0.030 0.026 0.029 0.037
2 0.031 0.026 0.034 0.022 0.051 0.028 0.036 0.056
3 0.040 0.036 0.044 0.032 0.074 0.045 0.063 0.083
4 0.295 0.223 0.254 0.143 0.314 0.298 0.300 0.327
5 0.234 0.233 0.232 0.229 0.244 0.233 0.233 0.257
6 0.144 0.124 0.133 0.124 0.159 0.133 0.150 0.185
7 0.103 0.097 0.115 0.107 0.144 0.120 0.131 0.134
8 0.059 0.035 0.054 0.033 0.084 0.048 0.063 0.085
9 0.170 0.155 0.173 0.135 0.206 0.176 0.206 0.317
10 0.099 0.011 0.102 0.020 0.126 0.069 0.107 0.151
11 0.168 0.147 0.166 0.156 0.291 0.166 0.221 0.380
12 0.142 0.114 0.137 0.114 0.172 0.139 0.150 0.169
13 0.228 0.213 0.213 0.217 0.239 0.223 0.233 0.285
14 0.043 0.040 0.047 0.037 0.087 0.048 0.075 0.123
15 0.215 0.203 0.219 0.200 0.226 0.210 0.216 0.232
16 0.017 0.008 0.008 0.008 0.020 0.017 0.017 0.068
17 0.094 0.079 0.084 0.089 0.193 0.089 0.164 0.208
18 0.110 0.108 0.147 0.120 0.216 0.144 0.170 0.206
19 0.038 0.036 0.042 0.034 0.047 0.041 0.041 0.049
20 0.205 0.226 0.233 0.226 0.349 0.239 0.301 0.342
21 0.028 0.026 0.035 0.024 0.046 0.036 0.035 0.043

Table 11
Wilcoxon rank sum test of different optimizer pairs calculated for all the data sets
using different optimizers.

Optimizer_1 Optimizer_2 Small Mixed Large

BALO-1 PSO 0.002 0.002 0.002
BALO-1 GAs 0.002 0.002 0.002
BALO-1 ALO 0.002 0.002 0.004
BALO-1 BBA 0.002 0.009 0.002
BALO-1 BALO-S 0.002 0.002 0.002
BALO-1 BALO-V 0.394 0.394 0.394
BALO-S PSO 0.002 0.002 0.002
BALO-S GAs 0.041 0.699 0.589
BALO-S ALO 0.699 0.818 0.589
BALO-S BBA 0.002 0.009 0.002
BALO-S BALO-V 0.009 0.002 0.002
BALO-V PSO 0.002 0.002 0.002
BALO-V GAs 0.002 0.002 0.002
BALO-V ALO 0.004 0.002 0.002
BALO-V BBA 0.002 0.026 0.002
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avoid premature convergence and local optima. Furthermore, we
can remark that the performance enhances using the V-shaped
transfer function; employed in BALO-V, rather than S-shaped one;
employed in BALO-S and BBA. This enhances in performance may
be interpreted by the abrupt switching between 0 and 1 in the
case of using the V-shape function that improves the exploration
power of the algorithm.

Table 4 outlines the statistical mean fitness values obtained
from the different optimization algorithms using mixed in-
itialization. In mixed initialization, all the algorithms are initialized
with some search agents closer to the optimal and some apart
from the optimal and hence it provides a greater diversity of the
population. We can highlight that this enhanced initialization
helps BBA to enhance its obtained solutions while the proposed
binary algorithms still keeping its enhanced performance regard-
less of the change in the initial population. The remark can in-
terpret that the algorithms inspired by the ALO principles can
generate much diverse population than the ones based on bat
Please cite this article as: E. Emary, et al., Binary ant lion approaches for feature selection, Neurocomputing (2016), http://dx.doi.org/
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http://dx.doi.org/10.1016/j.neucom.2016.03.101
http://dx.doi.org/10.1016/j.neucom.2016.03.101
http://dx.doi.org/10.1016/j.neucom.2016.03.101
http://dx.doi.org/10.1016/j.neucom.2016.03.101


Table 12
Average computational time of different optimizers averaged over the different initializers.

DS No. ALO BALO-1 BALO-S BALO-V BBA GAs PSO

1 54.539 58.863 61.860 62.393 53.731 40.132 53.547
2 62.006 57.561 67.067 66.571 51.921 39.726 52.254
3 56.461 59.967 71.188 71.825 56.353 42.521 54.642
4 67.170 78.934 84.121 83.861 66.996 51.682 64.257
5 66.609 74.356 83.471 78.834 65.394 50.780 64.933
6 43.311 47.528 51.228 51.639 39.357 31.046 39.771
7 51.923 48.638 58.363 58.286 43.964 32.730 43.534
8 560.125 456.039 464.636 466.768 481.368 378.590 501.268
9 42.352 44.308 50.204 50.405 38.774 29.917 37.528
10 79.271 80.473 82.328 85.512 70.422 59.710 72.661
11 55.097 45.025 62.185 62.402 40.999 30.215 39.253
12 44.499 46.777 52.721 53.075 38.982 30.231 36.557
13 75.378 72.649 71.961 75.947 65.900 54.114 69.213
14 49.078 49.682 54.245 54.341 44.312 37.993 45.567
15 1685.168 1256.171 1230.965 1276.610 1400.309 1131.997 1480.887
16 42.959 46.632 51.161 50.704 40.713 30.554 39.558
17 49.572 46.751 51.571 52.328 43.859 34.762 45.213
18 169.465 87.880 177.509 177.586 92.396 22.015 86.043
19 8598.746 6435.019 6542.570 6668.146 7189.532 2022.297 8356.652
20 226.738 66.486 237.080 236.964 72.810 14.736 54.868
21 867.887 659.962 811.685 802.000 759.117 197.827 710.674

Total 12,948 9819 10,418 10,586 10,757 4363 11,948
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algorithm thanks to its selection method which adopts roulette
wheel selection and the smooth switching between global and
local searching while the BBA is a global best guided algorithm.

Table 5 outlines the mean fitness using the large initialization
method. In the case of using large initialization, the search agents
have low diversity, but the search agents are closer to the optimal
solution. We can see that using this method did not enhance the
performance of BBA as it still cannot generate diverse solution as it
is global best guided solutions. In addition, the proposed binary
algorithm is still performing better than the continuous ones and
the BBA. Fig. 2 shows the effect of the initialization method on the
different optimizers on the different data sets. We can remark that,
the best performing initializer is the mixed initialization regardless
of the used optimizer. This can be interpreted by the diversity in
population provided by this method and the closeness of some
search agents to the global optima. Furthermore, the worst per-
forming initialization method is the small that neither provide a
diversity of the population nor provide closeness to the optima.

For assessing the repeatability of results, Table 6 outlines the
standard deviation of the obtained fitness values of different opti-
mizers on the different data sets averaged over the different in-
itialization methods. From the table, the proposed BALO-1 achieves
the best repeatability that is evidence that the BALO-1 algorithm can
reach similar/same optima regardless of the used initialization and the
stochastic behavior of the algorithm. Moreover, although BALO-V has
enhanced performance in reaching global optima, it has a lower re-
peatability. This lake of repeatability can be interpreted by the abrupt
switching between 0 and 1 in this squashing function that enhances
the global searching, but as we saw can reduce repeatability. Table 7
outlines the secondary objective in the fitness function namely
average selection size. BALO-1 has much enhanced performance over
the other optimizers adopted in the paper and can be interpreted by
the enhanced convergence capability of BALO-1 which implicitly
minimizes the selected feature number; as indicated in Table 7.

The performance of the different optimizers on the test data using
small, mixed and large initialization methods is summarized in Ta-
bles 8–10. From the tables, the performance using full feature set
selected is worse than that using wrapper-based approaches re-
gardless of the used optimizer. Moreover, BALO-1 is still performing
better than the other optimizers regardless of the used initialization
method. The flavor of using BALO-1 is more certain in the case of
Please cite this article as: E. Emary, et al., Binary ant lion approaches
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using the small initialization as the algorithm can enhance the di-
versity of the population and reach the global optima. Using mixed
initialization improves the performance of all optimization algo-
rithms. Also, the performance of the proposed binary algorithms is
enhanced even at respectively high dimensional data set. For asses-
sing the significance of performance Wilcoxon rank sum measure is
used and the results are outlined in Table 11. Wilcoxon tests the null
hypothesis that data in x and y vectors are samples from continuous
distributions with equal medians, against the alternative that they
are not. The proposed BALO-1 has a significant enhance over all other
optimizers except for the BALO-V at a significance level of 0.05 and
similar results for the BALO-V with all other optimizers, as indicated
in Table 11. Furthermore, there is no significant difference between
BALO-S and ALO regardless of the used initialization methods while
BALO-S has a significant difference in comparison to PSO and GAs in
the case of using small initialization.

Table 12 outlines the average computational time of different
optimization algorithms. All optimizers are using the same num-
ber of evaluation functions and hence we used the computational
time to compare the performance of the algorithms. In Table 12,
the GAs have the best computational time in comparison to all
other algorithms. Furthermore, the proposed binary algorithms
have computational speed compared with other algorithms except
GAs. We can remark that the BALO-1 has minimum run time in the
binary algorithms thanks to its simple operators that depend on
simple mutation and crossover. In addition, BALO-S and BALO-V
have comparable computational time while there is significant
difference between them in convergence capability.
6. Conclusion and future work

In this paper, binary variants of the ant lion optimizer are pro-
posed and applied for feature selection in wrapper mode. The con-
tinuous version of ant lion optimizer (CALO) is converted into the
binary form using either V-shaped or S-shaped functions or simply
inspiring the basic operators of ALO and applying binary corre-
sponding ones. The proposed approaches are applied and used for
feature selection in machine learning domain using different in-
itialization methods to assess different searching capabilities of the
algorithms. The proposed binary algorithms are applied in the 
for feature selection, Neurocomputing (2016), http://dx.doi.org/
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feature selection domain for evaluation and results are compared
against well-known feature selection methods particle swarm opti-
mizer (PSO), genetic algorithm (GA), continuous ALO, and binary bat
algorithm (BBA). The evaluation is performed using a set of evalua-
tion criteria to assess different aspects of performance. Results out-
lined show that the proposed BALO algorithm can adaptively search
the space of features optimally and be converging to optimal/near
optimal solution better than the other continuous and binary algo-
rithms. We can see that the ALO-based binary algorithm can achieve
the required diversity in population and can smoothly switch be-
tween exploration and exploitation and hence can avoid premature
convergence. Moreover, results prove that the binary algorithm
proposed based on V-shaped functions performs better than the S-
shaped ones. In addition, we can see that binary algorithms with
search agents guided by the global best only have worse perfor-
mance in comparison to the binary algorithms that depend on
roulette wheel selection such as ALO-based ones. The proposed
binary algorithms provide much repeatability of results and con-
vergence speed better than other algorithms adopted in the paper.
We can conclude that the initialization of algorithms can affect the
performance of the wrapper-based algorithms and hence we re-
commend using the mixed initialization method.
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