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Usually, resources are short in supply when earthquakes occur. In such emergency situa-
tions, disaster relief organizations must use these scarce resources efficiently to achieve
the best possible emergency relief. This paper therefore proposes a multi-objective,
multi-mode, multi-commodity, and multi-period stochastic model to manage the logistics
of both commodities and injured people in the earthquake response. Also, a robust
approach is developed and used to make sure that the distribution plan performs well
under the various situations that can follow an earthquake. Afterwards, it proposes a solu-
tion methodology according to hierarchical objective functions and uses it to illustrate the
customized robust modeling approach.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the literature several definitions for disasters have been proposed. The most widely accepted definition of disaster is
the one provided by the World Health Organization. According to this definition, a disaster is any occurrence that brings
about damages, destruction, ecological disruption, loss of human life, human suffering, deterioration of health and health
service on a scale adequate to warrant an extraordinary response from outside the affected area (Barbarosoglu and Arda,
2004). One of the mentioned occurrences is an earthquake, which often causes huge property damages, human injuries
and casualties. Increase of this type of disaster over the last years (Eshghi and Larson, 2008) along with growth of population
density in areas sensitive to earthquakes, create a growing need for designing emergency response procedures prior to an
earthquake disaster. These emergency procedures guide the set of actions taken during the initial phase of this emergency
situation, the so-called ‘‘Earthquake Response Phase’’.

Generally, the two most important intervention activities during earthquake response are the evacuation of people and
the logistics of materials. Evacuation takes place during the initial phase of the emergency response phase to extricate the
injured and casualties from the area. Logistics activities continue for a longer period of time as they aim to provide the nec-
essary disaster relief commodities to people in the affected areas, and transport the injured people to the hospitals or the
emergency medical centers within the affected area. An efficient planning of logistical activities during the earthquake re-
sponse phase can therefore tremendously decrease the loss of human life in the event of an earthquake. As a result, many
. All rights reserved.
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researchers have focused on this subject since the late 1980s. Most of his research considers the logistics of a single type of
commodity or of injured people. For instance, Knott (1987) proposed a linear programming model for the bulk food trans-
portation problem to minimize the transportation cost, maximize the amount of food delivered. Furthermore, a linear pro-
gramming model to determine the vehicle schedules for transporting the bulk food to a disaster area is presented in Knott
(1988).

Oh and Haghani (1996, 1997) analyze the transportation of different disaster relief commodities such as food, clothing,
medicine, medical supplies, machinery and personnel to minimize the loss of life and maximize the efficiency of the rescue
operations. The authors formulate a multi-commodity, multi-modal network flow models for generic disaster-relief opera-
tions. Other commodity logistics planning models are provided by Barbarosoglu et al. (2002), Ozdamar et al. (2004), Tzeng
et al. (2007), Sheu (2007, 2010), Nolz et al. (2011), Lin et al. (2011), Zhan and Liu (2011), Afshar and Haghani (2012), and
Zhang et al. (2012). Barbarosoglu et al. (2002) focus on the use of helicopters for aid delivery and rescue missions during
natural disasters. The authors use existing research on the helicopter routing to address crew assignment, routing and trans-
portation issues during the initial response phase of disaster management. Ozdamar et al. (2004) present a network-based
multi-period model to plan the commodity logistics in the natural disaster response. The model first determines the amount
of commodities to be transported between two adjacent nodes in the network. Then, another algorithm uses these amounts
to determine the origin and destination of commodities transporting in the networks. Tzeng et al. (2007) develop a multi-
objective relief-distribution model for designing real-life relief delivery systems. The model features three objectives, includ-
ing minimization of the total cost, minimization of the total travel time, and maximization of the minimal satisfaction during
the planning period. Sheu (2007) presents a hybrid fuzzy clustering-optimization approach to coordinate the relief logistics
flows in a three-layer relief supply network during the crucial rescue period. The proposed approach involves two recursive
mechanisms (disaster-affected area grouping and relief co-distribution) in a network with relief suppliers, urgent relief dis-
tribution centers, and relief demanding areas. Sheu (2010) also presents a dynamic relief-demand management model for
emergency logistics operations under imperfect information conditions in large-scale natural disasters. This model consists
of three main steps: data fusion to forecast relief demand in multiple areas, fuzzy clustering to classify affected area into
groups, and multi-criteria decision making to rank the order of priority of groups. Nolz et al. (2011) develop a multi-objective
model for relief aid distribution for a post-natural-disaster situation. This model encompasses three objective functions,
including minimizing the risk, maximizing the coverage provided by the logistics system and minimizing the total travel
time. Moreover, Lin et al. (2011) propose a multi-item, multi-vehicle, multi-period and multi-objective model for delivery
of prioritized items in disaster-relief operations. This model includes two objective functions, which minimize the total
unsatisfied demands and the total travel time for all tours and all vehicles. Zhan and Liu (2011) present a multi-objective
stochastic programming model to handle the uncertainty of demand, supply and the availability of transportation paths
in an emergency logistics network. The model focuses on minimizing the expected travel time and the proportion of unmet
demands by using chance constraints and scenario planning. Afshar and Haghani (2012) propose a mathematical model to
control the flow of several relief commodities in the response network. This model considers the optimal locations for several
layers of temporary facilities, routing and pick up or delivery schedules. Finally, Zhang et al. (2012) propose an integer math-
ematical model to allocate the available resources to demand points subject to constraints on multiple resources and pos-
sible secondary disasters. This model minimizes the cost of the total time of dispatching emergency resources.

Another stream of research mainly focused on transport of injured people, such as Fiedrich et al. (2000) and Jotshi et al.
(2009). Fiedrich et al. (2000) present a model for allocating resources in an earthquake response phase to handle the logistics
of injured persons. Moreover, Jotshi et al. (2009) develop a robust methodology for the dispatching and routing of emergency
vehicles in a post-disaster environment.

Although most of the previous papers examine a single type of logistical activity, some have addressed both disaster relief
commodity and injured people logistics during the earthquake response phase. Yi and Ozdamar (2007) present a dynamic
logistics coordination model for evacuation during the disaster response phase. This model investigates flows of both com-
modities and wounded people, and minimizes the sum of unserved injured persons and unsatisfied commodity demand.
Also, Yi and Kumar (2007) present a model to schedule the dispatching of commodities to distribution centers in the affected
areas and for transporting the injured persons from the affected areas to the medical centers. Ozdamar (2011) propose a
mathematical model to transport injured people and medical items such as medicine and vaccines to the affected locations
by helicopter. This model aims to minimize the total mission time required to complete the transportation tasks. Finally,
Ozdamar and Demir (2012) present a hierarchical cluster and route procedure for coordinating vehicle routing in large-scale
post-disaster distribution and evacuation activities.

Most of the information received at the disaster management center – such as the number of injured people, the amount
of demands, network situation, available commodities and hospital’s capacities – is imprecise and uncertain. To take this
uncertainty into account, Barbarosoglu and Arda (2004), Ma et al. (2010), Jotshi et al. (2009) and Zhan and Liu (2011) use
stochastic modeling techniques. Zhan and Liu (2011) consider the uncertainty of demand, supply and the availability of
paths in a location-allocation problem, and use chance constraints, scenario planning and goal programming to handle these
uncertainties. Moreover, Jotshi et al. (2009) use scenario planning to consider the uncertainty of damages and available net-
work. Ma et al. (2010) present a min–max robust multi-point, multi-vehicle transportation model to minimize the maximum
rescue time for moving injured people. In the model, it is assumed that the distances between affected area and medical cen-
ters are uncertain. Scenario planning is used represent the data uncertainty. Barbarosoglu and Arda (2004) develop a two-
stage stochastic programming framework for minimizing the expected transportation cost in the disaster response phase.
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They also use scenario planning-but in two stages-to model data uncertainty. In the first stage, a limited number of Earth-
quake Scenarios (ES) are considered to determine the magnitude of earthquake. Along the same lines, few impact scenarios
(IS) specific possible impacts of the earthquake in each ES. More details about the models discussed above are summarized in
Table 1.

Table 1 classifies the models according to twelve criteria classified in three classes which are modeling, transportation
and flow. The first class includes type of modeling, type of objective function, number of objective functions, solution meth-
odology, routing, and optimization method. According to the first criterion, papers are categorized into two groups: linear
programming (LP) and non-linear programming (NLP). Moreover, in the second criterion, papers are categorized into three
groups including cost objective function (C), humanitarian objective function (H), and both type of cost and humanitarian
(CH). The third criterion, number of objective functions, classifies the papers into two groups: single objective (SO) and multi
objectives (MO). The forth criterion, solution methodology, also categorizes the paper into three groups including heuristics
(H), meta-heuristics (MH) and exact methodology (Ex). The next criterion considers the routing ability of the proposed mod-
els. According to this criterion, papers are categorized into two groups. The first group consists of those papers for which the
routes are presumed to be known (PR), and the second group is those papers in which the routes are to be determined by the
model (R). Finally, the optimization method classifies the papers into four groups: deterministic optimization (DtO), stochas-
tic optimization (StO), robust optimization (RbO) and fuzzy optimization (FuO).

The second class of criteria, transportation, includes three criteria which are mode of transportation, combined transpor-
tation, and available vehicles. According the first criterion of this group, papers are divided into single mode (SM) and multi
mode (MM) models. The second criterion, combined transportation, investigates the capability of combined transportation
in the proposed models (combined transportation (TV) and models do not consider the combined transportation (SV)). Fi-
nally, the third criterion considers the condition of available vehicles in the network. According to this criterion, papers
are categorized into three groups. The first group assumes that the number of vehicles is known (FV), the second group pre-
sumes that the number of vehicles is uncertain (UV), and the last group assumes that there is no restriction on the number of
available vehicles (UV). In addition, the third class of criteria includes three criteria: flow type, supply type and demand type.
Flow type considers the number of different flows in the supply network. According to this criterion, papers are classified
into a group that considers a single commodity or injured people for transportation (SF), and the second group that considers
both commodities and wounded people for transportation (MF). The second and third criteria respectively investigate type of
supply and demand in the network. According to the second criterion, papers are categorized into two groups. One group
assumes that the amounts of available supplies are deterministic (DS) and another group presumes that the amounts of
available supplies are uncertain (SS). Finally, the third criterion classifies the papers into two groups: deterministic demand
(DD) and uncertain demand (SD).

Although logistics planning during earthquake response is clearly receiving increased attention in the literature, the exist-
ing models exhibit a number of drawbacks. First, Barbarosoglu and Arda (2004), Jotshi et al. (2009) and Ma et al. (2010) use
scenario planning to model uncertainty during disaster response. Although this approach is obviously superior to a deter-
ministic approach which ignores the uncertainty which is clearly present in practice, it is not a very efficient approach for
tackling real world problems. In practice, uncertain data usually changes in a set. Therefore, modeling approaches based
on uncertainty sets are more appropriate and more precise than scenario-based ones. Second, most of the existing models
only consider a single commodity type or make no distinction between different levels of injuries when planning logistics
relief efforts. Furthermore, the few papers which do consider both relief commodities and injured logistics (e.g. Yi and Ozd-
amar, 2007; Yi and Kumar, 2007; Ozdamar, 2011; Ozdamar and Demir, 2012), often do not take transportation restrictions
into account, and presume that all vehicles could transport all types of commodities and injured people (Yi and Ozdamar,
2007; Yi and Kumar, 2007). Fourth, existing research does not consider the priorities and hierarchy of response objectives.
Generally, three types of objectives have been considered in the earthquake response. These objective functions are minimi-
zation of transportation cost, minimization of unsatisfied demands and minimization of unserved injured people. These
three objectives clearly do not have the same priority. Naturally, serving the injured people and transporting them to the
hospitals or emergency medical centers is more important than satisfying the demands for disaster relief commodities.
Moreover, minimization of transportation cost is significant after minimization of these objectives. It is worth noting that,
these priorities may change in some exceptional conditions in which failing to satisfy commodity demand would cause addi-
tional casualties. Finally, none of the previous proposed models considered the combined transportation in its planning.

To overcome these drawbacks, this paper first develops a robust approach for stochastic model with uncertain right-hand
sides based on the approach proposed by Bertsimas and Sim (2004). Moreover, this paper presents a multi-objective, multi-
mode, multi-commodity, multi-period stochastic model to manage both relief commodities and injured people logistics in
the initial phase of earthquake response. Furthermore, the model takes into account combined transportation, vehicle capa-
bilities and represents the data uncertainty by interval data. The proposed stochastic model has three hierarchical objective
functions which respectively are: minimization of total (weighted) waiting time of unserved injured persons, minimization
of total (weighted) lead time of meeting the commodity needs, and minimization of total vehicles utilized in the response.
Finally, this paper applies the proposed robust approach for managing relief commodities and injured people in the initial
phase of earthquake response.

Note that Yi and Ozdamar (2007) and Barbarosoglu and Arda (2004) address similar research objectives. However, our
paper is significantly different as the dynamic model proposed by Yi and Ozdamar is deterministic. Furthermore, although
this model plans both relief commodities and injured logistics activities, it considers no restriction on the transportation of



Table 1
Properties of disaster management models.

Reference Year Modeling Transportation Flow

Type of
modeling

Type of objective
function

# Objective
functions

Solution
methodology

Routing Optimization
method

Mode of
transportation

Combined
transportation

Available
vehicles

Flow
type

Supply
type

Demand
type

Oh S. and
Haghani

1996 LP C SO Hu R DtO MM TV FV MF FS FD

Oh S. and
Haghani

1997 LP C SO Hu R DtO MM TV FV MF FS FD

Fiedrich et al. 2000 LP H SO MH R DtO SM SV FV SF FS FD
Barbarosoglu

et al.
2002 LP CH MO Hu R DtO SM SV FV MF FS FD

Barbarosoglu
and Arda

2004 LP C SO Ex R StO MM TV SV SF SS SD

Ozdamar et al. 2004 LP H SO Ex R DtO MM TV FV SF DS DD
Tzeng et al. 2006 LP CH MO Hu PR DtO SM SV UV SF FS FD
Yi and

Ozdamar
2007 LP H SO Hu R DtO SM TV FV MF FS FD

Yi and Kumar 2007 LP H SO MH R DtO SM TV FV MF FS FD
Sheu 2007 LP C SO Hu PR FuO SM SV FV SF FS SD
Jotshi et al. 2009 LP H SO Hu R RbO SM SV FV SF FS SD
Ma et al. 2010 NLP H SO Ex PR RbO SM SV FV SF FS FD
Nolz et al. 2011 LP H MO Hu R DtO SM SV FV SF FS FD
Lin et al. 2011 LP H SO Hu R DtO SM SV FV SF FS FD
Ozdamar 2011 LP H MO Ex PR DtO SM SV FV MF FS FD
Zhan and Liu 2011 LP H MO Ex R DtO SM SV FV SF SS SD
Ozdamar and

Demir
2012 LP H SO Hu R DtO MM SV FV MF FS FD

Afshar and
Haghani

2012 LP H SO Ex R DtO MM TV FV SF FS FD

Zhang 2012 LP C SO Hu PR DtO SM SV UV SF FS FD
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available disaster relief commodities and injured people. In addition, this model assumes that the requests for satisfying
commodity demand and serving injured people are equivalent. Therefore, it minimizes the sum of total unsatisfied commod-
ity needs and total number of unserved injured people. In practice, these two types of requests clearly have different prior-
ities. Furthermore, the model proposed by Barbarosoglu and Arda uses a two-stage scenario planning approach to represent
data uncertainty whereas uncertainty sets are more common in practice. As a result, obtaining the appropriate scenarios of-
ten proves to be difficult. Moreover, none of these researches considers the hierarchy of objective functions or supports the
combined transportation of people and relief materials.

The remainder of this paper is organized as follows. The second section defines the planning problem during earthquake
response and discusses common modeling assumptions in more detail before presenting a Stochastic Model for Logistics
Management (SMLM) to schedule the logistical activities in the initial phase of earthquake response. Given that existing ro-
bust optimization approaches from the literature are not appropriate for the proposed model, the robust optimization ap-
proach of Bertsimas and Sim (2004) is revised in Section 3. Section 4 uses the adjusted robust approach from Section 3 to
obtain the robust counterpart of the proposed stochastic model, and convert it into an equivalent deterministic model. Sec-
tion 5 proposes a solution methodology to solve the robust model obtained in Section 4. Finally, an illustrative example and
conclusion and future researches are presented in Sections 6 and 7 respectively.
2. Problem definition

In general, the logistics plan for the disaster response phase has two objectives. The first objective is transporting the in-
jured people from the affected area to the hospitals or other emergency medical centers, and the second one is dispatching
the necessary disaster relief commodities from predefined warehouses or suppliers to the affected area. In these circum-
stances, available resources, commodities and vehicles are usually inadequate. Therefore, a manager should have an effective
and efficient plan to achieve his objectives as much as possible. Even if there would be no shortages, e.g. because of the lim-
ited damage caused by a minor earthquake, managers will still benefit from an optimization model to allocate the available
resources in the best possible way.

In addition to the complexity in handling of the logistics activities, the available network data on demands, suppliers and
hospitals are usually uncertain during the planning horizon of a large-scale earthquake relief effort. These uncertainties fur-
ther complicate the planning of logistical activities for disaster relief organizations. Therefore, this paper aims at developing
a multi-objective, multi-mode, multi-commodity, multi-period stochastic model to manage both disaster relief commodities
and the logistics of injured people in the initial phase of earthquake response effort. To determine the other features of the
model, the factors from Table 1 are used to design different scenarios that mimic real-life conditions in Table 2. Finally in the
last column, the most practical model features are chosen for developing the logistics model.

Disaster relief managers want to minimize the total (weighted) waiting time of unserved injured people, the total
(weighted) lead time before satisfying commodity requests and the number of vehicles deployed in the response effort.
Without loss of generality, we want to give the highest priority to servicing the injured, the second highest priority to ship-
ping the disaster relief commodities, and the lowest priority to the minimization of vehicles used in response efforts. Hence,
the proposed model, Stochastic Model for Logistics Management (SMLM), minimizes these objectives are optimized hierar-
chically or lexicographically (see e.g. Marler and Arora, 2003) because of their differing importance levels. Other main
assumptions of the proposed model are as follows:
Table 2
Different scenarios of identified factors.

Criteria Scenarios for real-life condition Selected scenario

Scenario 1 Scenario 2 Scenario 1

Modeling
Type of modeling LP NLP – LP
Type of objective function CH H C CH
# Objective functions MO SO – MO
Solution methodology Ex MH Hu Ex
Routing R PR – R
Optimization method RbO/StO FuO DtO RbO

Transportation
Mode of transportation MM SM – MM
Combined transportation TV SV – TV
Available vehicles FV SV UV FV

Flow
Flow type MF SF – MF
Supply type SS DS FS SS
Demand type SD DD FD SD
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� Demand nodes, supply nodes, emergency medical centers or hospitals and the distance between them are known.
� The number of affected areas and the corresponding transportation arcs are given. In other words, the model assumes that

information on the transport infrastructure is available via advanced disaster detection technologies such as satellites and
geographic information system (GIS).
� There are several modes of transport with various types of vehicles having different capacities.
� There are several types of injuries with different priorities. Also, the injured need several types of commodities and drugs

whose priorities can be defined by the model user. Note that, the number of types of injuries (Fiedrich et al., 2000), types
of commodities and their priorities can e.g. be determined based on several external criteria such as the population
affected, the magnitude of earthquake and etc.
� Any vehicle permitted to transport the relief commodities can carry them from one or multiple supply nodes to one or

multiple demand nodes. In addition, any vehicle authorized to transport the injured persons can transport them from
one or multiple affected nodes to one or multiple emergency medical centers or hospitals.
� Each vehicle can transport pre-specified types of commodities or injured people. In other words, a vehicle cannot trans-

port all types of commodities and injured people.
� No vehicle can carry both commodities and injured people simultaneously.
� Commodities and injured people have to be directed moved from their pickup to their destination location without inter-

mediate stops, but can be transshipped into other appropriate vehicles at intermediate stops. Moreover, it is presumed
that this transmission does not take any time.
� The weight capacity and the volume capacity of each vehicle carrying commodity are known. Moreover, the capacity of

the vehicle carrying the wounded people is known too.
� There are several types of injuries and commodity demands with different priorities.
� The number of injured people, the amount of commodity demands, suppliers’ capacities and hospitals’ capacities in the

planning horizon are uncertain. However, they can be estimated for the next periods based on the magnitude of earth-
quake, properties of affected area, available data in disaster management center and experts’ previous experiences.
The uncertain data is presented by an uncertain set defined by a nominal value and a permitted change. In addition, these
sets can be unequal for different periods as they can follow from non-identical distributions.
� Since vehicles are often not been suitably equipped to treat the injured, injured persons are considered serviced when

delivered to a hospital or an emergency medical center. In other words, a served person is not serviced when assigned
to a vehicle but when delivered to a hospital or an emergency medical center.

Also, the parameters used in the SMLM model are as follows:
T
 length of the planning horizon,

N
 set of all nodes in the network, R = jNj

DN
 set of demand nodes, DN � N and M = jDNj

SN
 set of supplier nodes, SN � N and L = jSNj

HN
 set of hospital nodes, HN � N and Q = jHNj

IN
 set of intermediate nodes, the nodes which are not a supply, demand or hospital node, IN � N and I = jINj

KN
 set of all nodes except demand nodes, KN = Nn{DN}

NN
 set of all nodes except hospital nodes, NN = Nn{HN}

CS
 set of commodities types, A = jCSj

VS
 set of vehicle types, V = jVSj

IS
 set of injured people types, H = jISj

t,s
 denote time stamps in the planning horizon

m
 denotes the nodes affected by the earthquake

l
 denotes a specific node in which supplier exists

q
 denotes a specific node in which hospital exists

i
 denotes a specific node in IN set

k
 denotes a specific node in KN set

n
 denotes a specific node in NN set

o,p
 index of set N

a
 denotes a specific commodity

v
 denotes a specific vehicle

h
 denotes a specific injury type

MBig
 a large positive number

~damt
 amount of commodity type a demanded at node m at time t

~whmt
 number of injured persons type h evacuated at node m at time t

s~upals
 amount of commodity type a supplied at node l at time s

surpamt
 amount of surplus commodity type a exist at node m at time t
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tv
op
 time required for traversing arc (o,p) by vehicle type v
avv
ot
 available vehicle type v at node o at time t
w~sphqt
 capacity of the hospital located at node q for treating injury type h at time t

wa
 unit weight of commodity type a

ca
 unit volume of commodity type a

cwv
 weight capacity of vehicle type v

ccv
 volume capacity of vehicle type v

dvv
 capacity of vehicle type v

pa
 priority for satisfying demand of commodity type a

p0h
 priority for servicing injured people type h
dv
sopt ¼

1 If vehicle type v departing node o at time s arrives at node p before time t þ 1
0 otherwise;

�
acv

a ¼
1 if vehicle type v be able to carry commodity type a;

0 otherwise;

�
awv

h ¼
1 if vehicle type v be able to carry injured people type h;

0 otherwise:

�

Finally, the following variables are defined for the SMLM model.
devamt
 amount of unsatisfied demand of commodity type a at node m at time t

dewhmt
 number of injured people type h not serviced at node m at time t

Zv

opt
 number of vehicle type v moving from node o to node p at time t
Xlv
aopt
amount of commodity type a belonging to supplier located at node l, and dispatched from node o to node p at
time t by vehicle type v
Ymv
hopt
 number of injured people of type h belonging to the affected node m,and dispatched from node o to node p at

time t by vehicle type v

avvv

ot
 number of available vehicle type v at node o at time t

TFv

ait
 amount of commodity type a transferred from the vehicle type vto other types of vehicle at node i at time t
TTv
ait
 amount of commodity type a transferred from other types of vehicles to the vehicle type v at node i at time t
TFDv
hit
 number of injured people type h transferred from the vehicle type v to other types of vehicles at node i at time t
TTDv
hit
 number of injured people type h transferred from other types of vehicles to the vehicle type v at node i at time t
Because it can be proven that the total (weighted) waiting time of injured people and the total (weighted) lead time of
unsatisfied demand are respectively equivalent to the total (weighted) number of injured person-periods not serviced, and
the summation of unsatisfied commodity needs during the planning horizon (Najafi et al., submitted for publication), the
SMLM model uses these equivalents in its objective functions for sake of simplicity. The SMLM model can therefore be stated
as follows:
Min f 1 ¼
XH

h¼1

XM

m¼1

XT

t¼1

P0h � dewhmt; ð1Þ

Min f 2 ¼
XA

a¼1

XM

m¼1

XT

t¼1

Pa � devamt; ð2Þ

Min f 3 ¼
XO

o¼1

XP

p¼1

XT

t¼1

Zopt; ð3Þ

S:t: :
XV

v¼1

XL

l¼1

Xt

s¼1

XO

o¼1

Xlv
aoms � d

v
somt �

XV

v¼1

XL

l¼1

Xt

s¼1

XP

p¼1

Xlv
amps �

Xt

s¼1

~dams ¼ surpamt � devamt 8m 2 DN; a 2 CS; t 2 T; ð4Þ

�
XV

v¼1

Xt

s¼1

XQ

q¼1

XO

o¼1

Ymv
hoqs � d

v
soqt þ

XV

v¼1

Xt

s¼1

XQ

q¼1

XP

p¼1

Ymv
hqps þ

Xt

s¼1

~whms ¼ dewhmt 8m 2 DN; h 2 IS; t 2 T; ð5Þ

XV

v¼1

Xt

s¼1

XP

p¼1

Xlv
alps 6

Xt

s¼1

s~upals 8a 2 CS; l 2 SN; t 2 T; ð6Þ

XV

v¼1

Xt

s¼1

XP

p¼1

Ymv
hmps 6

Xt

s¼1

~whms 8m 2 DN; h 2 IS; t 2 T; ð7Þ
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XV

v¼1

XO

o¼1

Xt

s¼1

Xlv
aoks � d

v
sokt �

XV

v¼1

XP

p¼1

Xt

s¼1

Xlv
akps ¼ 0 8a 2 CS; k 2 KN; l 2 SN; t 2 T; k – l; ð8Þ

XV

v¼1

XO

o¼1

Xt

s¼1

Ymv
hons � d

v
sont �

XV

v¼1

XP

p¼1

Xt

s¼1

Ymv
hnps ¼ 0 8h 2 IS; n 2 NN; m 2 DN; t 2 T; n – m; ð9Þ

XL

l¼1

XO

o¼1

XP

p¼1

Xlv
aopt 6 MBig � acv

a 8a 2 CS; v 2 VS; t 2 T; ð10Þ

XM

m¼1

XO

o¼1

XP

p¼1

Ymv
hopt 6 MBig � awv

h 8h 2 IS; v 2 VS; t 2 T; ð11Þ

XO

o¼1

XL

l¼1

Xt

s¼1

Xlv
aois dv

soit � dv
soiðt�1Þ

� �
�
XL

l¼1

XP

p¼1

Xlv
aipt ¼ TFv

ait � TTv
ait 8a 2 CS; i 2 IN; t 2 T; v 2 VS; ð12Þ

XO

o¼1

XM

m¼1

Xt

s¼1

Ymv
hois dv

soit � dv
soiðt�1Þ

� �
�
XM

m¼1

XP

p¼1

Ymv
hipt ¼ TFDv

hit � TTDv
hit 8h 2 IS; i 2 IN; t 2 T; v 2 VS; ð13Þ

XL

l¼1

XA

a¼1

Xlv
aopt � ca 6 Zv

opt � ccv 8o 2 N; p 2 N; t 2 T; v 2 VS; ð14Þ

XL

l¼1

XA

a¼1

Xlv
aopt �wa 6 Zv

opt � cwv 8o 2 N; p 2 N; t 2 T; v 2 VS; ð15Þ

XM

m¼1

XH

h¼1

Ymv
hopt 6 Zv

opt � dvv 8o 2 N; p 2 N; t 2 T; v 2 VS; ð16Þ

Zv
opt 6 MBig � tv

op 8o 2 N; p 2 N; t 2 T; v 2 VS; ð17ÞXO

o¼1

XS

s¼1

Zv
ops � d

v
sopt þ

Xt

s¼1

avv
ps ¼ avvv

pt þ
XO

o¼1

Xt

s¼1

Zv
pos 8p 2 N; t 2 T; v 2 VS; ð18Þ

XV

v¼1

XM

m¼1

XO

o¼1

Xt

s¼1

Ymv
hoqs � d

v
soqt �

XV

v¼1

XM

m¼1

XP

p¼1

XS

s¼1

Ymv
hqps 6

Xt

s¼1

w~sphqs 8h 2 IS; q 2 HN; v 2 VS; ð19Þ

Y P 0 & Integer; X P 0 & Integer; Z P 0 & Integer;

dev P 0 & Integer; dew P 0 & Integer; avv P 0 & Integer; ð20Þ
where Eq. (1) minimizes the total (weighted) unserved injured people, and Eq. (2) minimizes the total (weighted) unsatisfied
demands during the planning horizon. In addition, Eq. (3) minimizes the total vehicles utilized in the response. Note that,
these equations are minimized hierarchically. Constraints (4) and (5) determine unsatisfied commodities demand and un-
served injured people at demand nodes respectively. Constraint (6) ensures that the dispatched commodities are not larger
than the at hand commodities of current suppliers. Constraint (7) guarantees that the amount of injured people dispatched
from a specific demand node is larger than the number of evacuated people from that node. Constraints (8) and (9) enforce
material flow and injured people flow on network nodes. In addition, these equations guarantee that no commodity or in-
jured people abide in the intermediate nodes. Constraints (10) and (11) ensure that all commodities and injured people are
transported by authorized vehicles. Since combined transportation is allowed, constraints (12) and (13) define transmitted
commodities and injured people among permitted vehicles, respectively. Constraints (14) and (15) restrict the commodities’
quantity by weight capacity and volume capacity of the used vehicles. Similarly, constraint (16) restricts the number of in-
jured people by the vehicle capacity. Constraint (17) restricts the itinerary of each vehicle type to existing arcs. Constraint
(18) balances the flow of vehicles over each node, and constraint (19) restricts the number of injured people dispatched to
the hospitals to their allowed capacity. Finally, constraint (20) defines the variables. Note that the proposed model presumes
that information about the transportation network is easily accessible in real time via advanced disaster detection technol-
ogy. If such information is not accessible for planning, the responder could solve the model for likely network scenarios.
However, these scenarios often result in different logistics plans and emergency routes for response, and a schedule prepared
for one scenario mostly is inapplicable for another scenario.
3. The robust LP model with uncertain right-hand side

Robust optimization is one of the predominant approaches to solving linear optimization problems with uncertain data.
The first step in this direction was taken by Soyster (1973). In this study, he proposed a linear optimization model to con-
struct a solution that is feasible for all data that belong to a convex set. This approach was further developed by Ben-Tal and
Nemirovski (1998, 1999, 2000), El-Ghaoui and Lebret (1997), El-Ghaoui et al. (1998), Bertsimas and Sim (2004). Bertsimas
and Sim (2004) propose a solution approach for a linear mathematical model with an uncertain coefficient matrix. Their ap-
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proach provides a robust solution whose level of conservatism can be flexibly adjusted in terms of probabilistic bounds for
constraint violation. Since the SMLM model has a deterministic zero–one coefficient matrix like most of the logistics models,
the method proposed in Bertsimas and Sim (2004) cannot provide its robust counterpart. Therefore, this section aims at
explaining and customizing the Bertsimas and Sim (2004) approach for a robust optimization of the SMLM model. It is worth
noting that this customized approach can be used for all logistics models in which right-hand side is a summation of some
uncertain parameters.

Bertsimas and Sim (2004) consider the following model,
Max z ¼ cx;
~ax 6 b;
l 6 x 6 u;

ð21Þ
in which some parameters of the coefficient matrix (aij) are uncertain. In addition, each uncertain parameter ð~aijÞ takes a
value according to a symmetric distribution with mean equals to the nominal value (aij) in the interval ½aij � âij; aij þ âij�.
Furthermore, they define a parameter Ci for every constraint. This parameter is not necessarily integer and takes a value
in the interval [0, jJij], Ji being the set of uncertain parameters in the ith constraint). Finally, they propose a linear robust coun-
terpart to protect against all cases that bCic coefficients of set Ji are permitted to change, and one coefficient ðaiti

Þ changes by
ðCi � bCicÞâiti

. To guarantee feasibility, they consider a protective function for every constraint i which are named b(x,Ci) and
are equal to
bðx;CiÞ ¼ Max
fSi[ti jSi # Ji ;jSi j¼bCic;ti2JinSig

X
j2Ji

âijjxjj þ ðCi � bCicÞaiti
jxti
j

( )
: ð22Þ
Therefore, model (21) can be rewritten as model (23)
Max z ¼ cx;

s:t: :
X

j

aijxj þ Max
fSi[ti jSi # Ji ;jSi j¼bCic;ti2JinSig

X
j2Ji

âijyj þ ðCi � bCicÞaiti
yti

( )
6 bi 8i;

� yj 6 xj 6 yj 8j;

lj 6 xj 6 uj 8j;
yj P 0 8j:

ð23Þ
Finally, they prove that model (21) has a robust counterpart as follows:
Max z ¼ cx;

s:t: :
X

j

aijxj þ ziCi þ
X
j2Ji

pij 6 bi 8i; ð24Þ

zi þ pij P âijyj 8i; j 2 Ji; ð25Þ
� yj 6 xj 6 yj 8j; ð26Þ
lj 6 xj 6 uj 8j; ð27Þ
pij P 0 8i; j 2 Ji; ð28Þ
yj P 0 8j; ð29Þ
zi P 0 8i: ð30Þ
Now, consider the following linear optimization model:
Min z ¼
X

j

cjxj;X
j

aijxj 6
~bi 8i;

xj P 0 8j;

ð31Þ
in which cij and aij are deterministic and ~bi is uncertain. Moreover, each uncertain right-hand side ð~biÞ is the summation of
some uncertain parameters. That is,
~bi ¼
Xsi

s¼1

~bis; ð32Þ
where si is the number of uncertain parameters in ith constraint. Moreover, each uncertain parameter ð~bisÞ takes a value
according to a symmetric distribution with mean equals to the nominal value bis in the interval ½bis � b̂is; bis þ b̂is�. In addition,
parameter Ci is defined for every constraint I similar to one defined by Bertsimas and Sim (2004). This parameter takes a
value in the interval [0, jsij], and adjusts the level of conservatism of the solution acquired by our proposed method. As men-
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tioned earlier, according to this method the acquired solution is feasible when up to bCic parameters of ith right-hand side
are permitted to change and one parameter of ith right-hand side ð~biti

Þ changes by ððCi � bCicÞb̂iti
Þ. Now according to Eq. (32),

the constraints of model (31) can be rewritten as,
X
j

aijxj 6
~bi ¼

Xsi

s¼1

~bis: ð33Þ
Obviously, we should also define a protective function b (si,Ci) to achieve a feasible solution when up to b Cic right-hand
sides change and one parameter ~biti

changes by ðCi � bCicÞb̂iti
. Therefore, each right-hand side could be written according to

the nominal value and protective function as follows:
~bi ¼
Xsi

s¼1

~bis ¼
Xsi

s¼1

bis � bðsi;CiÞ: ð34Þ
To achieve a feasible solution in the worst condition of allowed changes, b(si,Ci) should be defined as follows:
bðsi;CiÞ ¼ Max
fSi[ti jSi # si ;jSi j¼bCic;ti2sinSig

X
s2si

b̂is þ ðCi � bCicÞb̂iti

( )
: ð35Þ
Now, according to Eq. (34), Eq. (33) can be rewritten as follows:
X
j

aijxj 6
Xsi

s¼1

bis � bðsi;CiÞ )
X

j

aijxj þ bðsi;CiÞ 6
Xsi

s¼1

bis ¼ bi: ð36Þ
Thus, the related non-linear robust optimization model is,
Max w ¼
X

j

� cjxi;

X
j

aijxij þ Max
fSi[ti jSi #si ;jSi j¼bCic;ti2sinSig

X
s2si

b̂is þ ðCi � bCicÞb̂iti

( )
6 bi 8i;

xj P 0 8i; j:

ð37Þ
Comparing the acquired model to the initial model (22) demonstrates that the current model is a simplified version of the
former in which uj =1, lj = 0 and âij ¼ b̂ij. Moreover, since the new protective function (Eq. (35)) does not include any deci-
sion variable, variables y in constraint (25) equal one and constraint (26) can be removed. In Appendix A (Proposition 1) it is
proven that the robust counterpart of model (31) is as follows:
Max w ¼
X

j

� cjxj or Min z ¼
X

j

cjxj;

s:t: :
X

j

aijxj þ ziCi þ
X
s2si

pis 6 bi 8i;

zi þ pis P b̂is 8i; s 2 si;

xj P 0 8j;

pis P 0 8i; s 2 si;

zi P 0 8i:

ð38Þ
Moreover, it can be shown that the acquired probability bounds of constraint violation by Bertsimas and Sim (2004) also
hold for the above counterpart of the model (Proposition 2). In other words, one could prove that if more than bCic param-
eters of ith right-hand side change; the probability of the ith constraint violation is at most B(n,Ci) (Proposition 3). Where,
Bðn;CiÞ ¼
1
2n ð1� lÞ

n

bmc

� �
þ
Xn

l¼bmcþ1

n

l

� �( )
; ð39Þ
in which, n = jsijm = (Ci + n)/2 and l = m � b mc.
To prove this claim, we use Proposition 2 and Theorem 3 proven by Bertsimas and Sim (2004). Note that, in the new proof,

parameters gij, r⁄ and cij are respectively replaced by gis, new r⁄ and cis defined as follows,
gis ¼
bis � ~bis

b̂is

; ð40Þ

r� ¼ arg max
s2si

fbisg; ð41Þ
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cis ¼
1 if s 2 S�i
b̂is=b̂ir� if s R S�i

(
: ð42Þ
These proofs are presented in Appendix A. The presented proofs demonstrate that model (38) results in feasible solution
when utmost b Cic right-hand sides are allowed to change and one parameter ~biti

changes by ðCi � bCicÞb̂iti
. In addition, when

the number of changed parameters is more than the number of parameters permitted to change; the probability of ith con-
straint’s violation is less than or equal to B(n,Ci).

4. Robust formulation of SMLM

The customized robust approach was proposed for a stochastic model in which all constraints are ‘‘less than or equal to’’
inequalities. Therefore, to use this approach to present the robust counterpart, all constraints of the stochastic model must be
of the same type. As a result, the constraints of SMLM containing uncertain parameters may need to be converted. Since all
uncertain constraints except constraints (4) and (5) are of a ‘‘less than or equal to’’ form, the conversion remains limited to
constraints (4) and (5). For constraint (4),expression Surpamt is removed, and it is rewritten as
XV

v¼1

XL

l¼1

Xt

s¼1

XP

p¼1

Xlv
amps �

XV

v¼1

XL

l¼1

Xt

s¼1

XO

o¼1

Xlv
aoms:d

v
somt � devamt 6 �

Xt

s¼1

~dams: ð43Þ
In addition, since the second objective function minimizes the amount of unsatisfied demand, the equality sign could be eas-
ily replaced by a ‘‘less than or equal to’’ sign in constraint (5). So, it can be written as follows:
XV

v¼1

Xt

s¼1

XQ

q¼1

XP

p¼1

Ymv
hqps �

XV

v¼1

Xt

s¼1

XQ

q¼1

XO

o¼1

Ymv
hoqs:d

v
soqt � dewhmt 6

Xt

s¼1

~whms: ð44Þ
Now, to determine the robust counterpart of SMLM, named RMLM for Robust Model for Logistics Management, the following
additional variables are defined.

C1t
am: Number of uncertain parameter in constraint (43) until period t.

a1t
am and b1t

ams: Dual variables of the linear equivalent of protective function of constraint (43).
Likewise, C2t

hm is defined for constraints (7) and (44), C3t
al and C4t

hq are respectively defined for constraints (6) and (19).
Moreover, a2t

hm; b2t
hms are defined as the dual variables of the protective functions of constraints (4) and (44). In addition,

a3t
al ; b3t

als; a4t
hq and b4t

hqs are defined as the dual variables of protective function of constraints (6) and (19). The RMLM model
can therefore be written as follows:
Min f 1 ¼
XH

h¼1

XM

m¼1

XT

t¼1

P0h �dewhmt; ð45Þ

Min f 2 ¼
XA

a¼1

XM

m¼1

XT

t¼1

Pa �devamt; ð46Þ

Min f 3 ¼
XO

o¼1

XP

p¼1

XT

t¼1

Zopt; ð47Þ

S:t: :
XV

v¼1

XL

l¼1

Xt

s¼1

XP

p¼1

Xlv
amps�

XV

v¼1

XL

l¼1

Xt

s¼1

XO

o¼1

Xlv
aoms � d

v
somt�devamtþ

X
s2s1 & s6t

b1t
amsþa1t

amC1t
am 6�

Xt

s¼1

dams 8m2DN; a2 CS; t 2 T;

ð48ÞXV

v¼1

Xt

s¼1

XQ

q¼1

XP

p¼1

Ymv
hqps�

XV

v¼1

Xt

s¼1

XQ

q¼1

XO

o¼1

Ymv
hoqs � d

v
soqt�dewhmt þ

X
s2s2 & s6t

b2t
hmsþa2t

hmC2t
hm 6�

Xt

s¼1

whms 8m2DN; h2 IS; t 2 T;

ð49ÞXV

v¼1

Xt

s¼1

XP

p¼1

Xlv
alpsþ

X
s2s3 & s6t

b3t
alsþa3t

al C
3t
al 6

Xt

s¼1

sup
als
8a2 CS; l2 SN; t 2 T; ð50Þ

XV

v¼1

Xt

s¼1

XP

p¼1

Ymv
hmps

X
s2s2 & s6t

b2t
hmsþa2t

hmC2t
hm 6

Xt

s¼1

whms 8m2DN; h2 IS; t 2 T; ð51Þ

XV

v¼1

XO

o¼1

Xt

s¼1

Xlv
aoks � d

v
sokt�

XV

v¼1

XP

p¼1

Xt

s¼1

Xlv
akps ¼ 0 8a2 CS; k2 KN; l 2 CS; t 2 T; k – l; ð52Þ

XV

v¼1

XO

o¼1

Xt

s¼1

Ymv
hons � d

v
sont�

XV

v¼1

XP

p¼1

Xt

s¼1

Ymv
hnps ¼ 0 8h2 IS; n2NN; m2DN; t 2 T; n – m; ð53Þ
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XL

l¼1

XO

o¼1

XP

p¼1

Xlv
aopt 6MBig �acv

a 8a2 CS; v 2 VS; t 2 T; ð54Þ

XM

m¼1

XO

o¼1

XP

p¼1

Ymv
hopt 6MBig �awv

h 8h 2 IS; v 2 VS; t 2 T; ð55Þ

XO

o¼1

XL

l¼1

Xt

s¼1

Xlv
aois dv

soit � dv
soiðt�1Þ

� �
�
XL

l¼1

XP

p¼1

Xlv
aipt ¼ TFv

ait �TTv
ait 8a2 CS; i2 IN; t 2 T; v 2 VS; ð56Þ

XO

o¼1

XM

m¼1

Xt

s¼1

Ymv
hois dv

soit � dv
soiðt�1Þ

� �
�
XM

m¼1

XP

p¼1

Ymv
hipt ¼ TFDv

hit �TTDv
hit 8h2 IS; i2 IN; t 2 T; v 2 VS; ð57Þ

XL

l¼1

XA

a¼1

Xlv
aopt � ca 6 Zv

opt � ccv 8o2N; p2N; t 2 T; v 2 VS; ð58Þ

XL

l¼1

XA

a¼1

Xlv
aopt �wa 6 Zv

opt � cwv 8o2N; p2N; t 2 T; v 2 VS; ð59Þ

XM

m¼1

XH

h¼1

Ymv
hopt 6 Zv

opt �dvv 8o2N; p2N; t 2 T; v 2 VS; ð60Þ

Zv
opt 6MBig � tv

op 8o2N; p2N; t 2 T; v 2 VS; ð61ÞXO

o¼1

XS

s¼1

Zv
ops � d

v
sopt þ

Xt

s¼1

avv
ps ¼ avvv

pt þ
XO

o¼1

Xt

s¼1

Zv
pos 8p2N; t 2 T; v 2 VS; ð62Þ

XV

v¼1

XM

m¼1

XO

o¼1

Xt

s¼1

Ymv
hoqs � d

v
soqt �

XV

v¼1

XM

m¼1

XP

p¼1

XS

s¼1

Ymv
hqpsþ

X
s2s4 & s6t

b4t
hqsþa4t

hqC
4t
hq 6

Xt

s¼1

wsphqs 8h2 IS; q 2HN; v 2 VS; ð63Þ

b1t
amsþa1t

amC1t
am P d̂ams 8a2 CS; m2DN; t 2 T; s 2 s1 & s6 t; ð64Þ

b2t
hmsþa2t

hmC2t
hm P ŵhms 8h2 IS; m2DN; t 2 T; s2 s2 & s6 t; ð65Þ

b3t
alsþa3t

al C
3t
al P Sûpals 8a2 CS; l 2 SN; t 2 T; s 2 s3 & s6 t; ð66Þ

b4t
hqsþa4t

hqC
4t
hq P wŝphqs 8h 2 IS; q2HN; t 2 T; s2 s4 & s6 t; ð67Þ

Y P 0 & Integer; X P 0 & Integer; Z P 0 & Integer;
dev P 0 & Integer; dew P 0 & Integer; avv P 0 & Integer; ð68Þ
b P 0; a P 0;
where constraints (48) and (64) are the robust counterparts of constraint (43), and constraints (50) and (66) are the robust
counterparts of constraint (6) of SMLM model. Moreover, the robust counterpart of constraint (44) includes constraints (49)
and (65). Finally, constraints (51), (65), (63), (67) are respectively robust counterparts of constrains (7) and (19).

5. Solution methodology for the RMLM model

Following the hierarchical objective functions of the RMLM model, it can be reformulated as a Structured RMLM (SRMLM)
as follows:
Min f3ðZÞ;
s:t: :

Min f 2ðXÞ;
s:t: :

g1
i ðXÞ 6 b1

i ;

g2
i ðX; ZÞ 6 b2

i ;

g0iða;bÞ 6 b0i;

Z 2

Min f 1ðYÞ;
s:t: :

g3
i ðYÞ 6 b3

i ;

g4
i ðY ; ZÞ 6 b4

i ;

g5
i ðZÞ 6 b5

i ; ð69� IÞ
g00i ða;bÞ 6 b00;i
Y ; Z 2 Intþ;a2;b2;a4;b4 P 0;

8>>>>>>>>>>><>>>>>>>>>>>:
X 2 Intþ;a1; b1;a3; b3 P 0;

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð69Þ
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where f1(Y), f2(X) and f3(Z) are respectively the first, the second and the third objective function. Furthermore, g1
i ðXÞ denotes

the set of all constraints of RMLM being function of X variable, and g2
i ðX; ZÞ denotes the set of all constraints of RMLM being

function of X and Z variables, and so on. Now, to solve the SRMLM model, three linear optimization model P1, P2 and P3 are
defined as follows,

Model P1
Min f 1ðYÞ;

s:t: : g3
i ðYÞ 6 b3

i ;

g4
i ðY; ZÞ 6 b4

i ;

g5
i ðZÞ 6 b5

i ;

g00i ða; bÞ 6 b00i ;

Y; Z 2 Intþ;a2;b2;a4;b4 P 0:

ð70Þ
Model P2
Min f 2ðXÞ;
s:t: : f 1ðYÞ 6 f 0�1 ; ðIÞ

g1
i ðXÞ 6 b1

i ;

g2
i ðX; ZÞ 6 b2

i ; ðIIÞ

g0iða; bÞ 6 b0i;

g3
i ðYÞ 6 b3

i ;

g4
i ðY; ZÞ 6 b4

i ; ðIIIÞ

g5
i ðZÞ 6 b5

i ; ðIVÞ

g00i ða; bÞ 6 b00i ;

X;Y; Z 2 Intþ;a;b P 0:

ð71Þ
Model P3
Min f 3ðZÞ;

s:t: : g2
i ðx�2; ZÞ 6 b2

i ;

g4
i ðy�2; ZÞ 6 b4

i ;

g5
i ðZÞ 6 b5

i ;

Z 2 Intþ;

ð72Þ
where f 0�1 ; x�2 and y�2 are the optimal objective value of model P1 and the optimal values of variables X and Y in model P2. Note
that, since objectives are hierarchical, they are handled lexicographically. In other words, the first objective function is opti-
mized without taking the other objective functions into account in the first step. In addition, the first step does not consider
the constraints of the X variable. Next, the first objective is fixed to its optimal value (which was obtained in the previous
step, and is named f �1 Þ, and the second objective is minimized according to the X and Y constraints. Because the value of
the first objective function is considered as a constraint in this step, the approach guarantees that the optimization of the
first objective is prioritized over the second one. Finally, by fixing the values of the X and Y variables, the proposed method-
ology tries to minimize the number of vehicles used in the disaster response phase. According to the defined models, the
optimal solution of SRMLM could be achieved by the methodology depicted in Fig. 1. For the ease of reference within the
paper, this methodology is named SMSRM (Solution Methodology of the Structured Robust Model).

Proposition SMSRM methodology achieves the optimal solution if SRMLM has a single optimal solution. Otherwise, this
methodology attains one of the optimal solutions.

Proof. Let us assume that Y�1; Z
�
1

� �
; X�2;Y

�
2; Z

�
2

� �
; Z�3
� �

and (X⁄,Y⁄,Z⁄) are respectively the optimal solutions of models P1, P2, P3

and SRMLM. In addition, it is assumed that f 0�1 ; f
0�
2 ; f

0�
3 are the optimal objective values of models P1, P2, P3, and f �1 ; f

�
2 ; f

�
3

� �
are

the optimal value of objectives in SRMLM. Moreover, FA1, FA2, FA3 and FA, respectively, denote the feasible area of models P1,
P2, P3 and SRMLM. Furthermore, since all constraints of model P1 exist in model P2, FA2 is a subset of FA1 (FA2 # FA1). A
similar argument holds for SRMLM. Therefore, FA2 is also a subset of FA (FA2 # FA). Now, to prove the proposition, two states
– namely a single optimal solution and multiple optimal solutions-are considered separately.
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State I. The SRMLM model has a single optimal solution.

f1 is the first hierarchical objective function of the SRMLM. Therefore, to achieve its optimal value, only constraints (69-I)
must be considered. In fact, this subset of SRMLM is model P1. Thus, f �1 is equal to f 0�1 . By replacing the value of f 0�1 in model P2,
it could be claimed that Y�2 ¼ Y�. To prove this claim, consider constraint (71-I) in model P2. According to this constraint,

f1ðY�2Þ could not be more than f 0�1 f1 Y�2
� �

� f 0�1

� �
. Furthermore, since
Y�2; Z
�
2 2 FA2

FA2 # FA1

�
) Y�2; Z

�
2 2 FA1: ð73Þ
Now, since f 0�1 is the optimal value of the objective function, f1ðY�2Þ¥ f 0�1 . So,
f1ðY�2Þ¥ f 0�1
f1ðY�2Þ� f 0�1

(
) f1ðY�2Þ ¼ f 0�1 ¼ f �1 ¼ f1ðY2Þ: ð74Þ
Finally, since it is presumed that the SRMLM has a single optimal solution in this state, the equality of these two objective
functions guarantees the equality of Y�2 andY⁄. Furthermore, the equality of X�2 and X⁄ is proven by contradiction. Suppose
that X�2 – X�. Since the SRMLM model has a single optimal solution (according to State I), the objective values of these
two solutions could not be equal ðf2ðX�2Þ – f 2ðX�ÞÞ. So, one of the following cases could take place.

Case A. f2ðX�2Þ < f2ðX�Þ,
Since X�2;Y

�
2; Z

�
2

� �
is the optimal solution of model P2, it is a feasible solution for this model. On the other hand,

Y�2 ¼ Y�. So, X�2;Y
�; Z�2

� �
is also a feasible solution for model P2. Therefore,
ðX�2;Y
�; Z�2Þ 2 FA2

FA2 # FA

�
) ðX�2;Y

�; Z�2Þ 2 FA: ð75Þ
Eq. (75) demonstrates that ðX�2;Y
�; Z�2Þ is a feasible solution for the SRMLM. Moreover, as mentioned earlier, the objectives of

SRMLM are hierarchically structured. In other words, the optimization of the first objective is more desirable than optimi-
zation of the second or third objectives. Now, if we assume that f1ðY�2Þ ¼ f1ðY�Þ and f2ðX�2Þ < f2ðX�Þ;X� could not be the opti-
mal solution of SRMLM model. This conclusion contradicts with the initial assumption on X⁄. Thus,
f2ðX�2Þ¥ f2ðX�Þ: ð76Þ
Case B. f2ðX�2Þ > f2ðX�Þ,
In this case, since (X⁄,Y⁄,Z⁄) 2 FA; all constraints of SRMLM are satisfied. In addition, since all constraint of model
P2 except (71-I) exist in SRMLM, and f1ðY�Þ ¼ f �1 ¼ f 0�1 , all constraints of model P2 are also satisfied. Therefore, (X⁄, -
Y⁄,Z⁄) is a feasible solution for model P2. Now, because f1ðY�Þ ¼ f 0�1 , and f2ðX�Þ < f2ðX�2Þ; X�2 could not be the optimal
solution of model P2. This conclusion also contradicts with our assumption about the optimality of X�2. So,
� �
f2ðX2Þ� f2ðX Þ: ð77Þ
Fig. 1. SMSRM methodology for solving SRMLM model.
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Thus, Eqs. (76) and (77) show that f2ðX�2Þ ¼ f2ðX�Þ. Now, since the SRMLM model has a single optimal solution in this state, it
is concluded that X�2 ¼ X�.
Finally, to prove the equality of Z�3 and Z⁄, we also utilize the contradiction method. Suppose that Z�3 – Z�. According to the
single optimal solution of SRMLM in State I, f3ðZ�3Þ – f 3ðZ

�Þ. Therefore, one of the following cases is allowed to occur.
Case C. f3ðZ�3Þ < f3ðZ�Þ,

In this case, since
X�2 ¼ X�;
Y�2 ¼ Y�;

ðX�2;Y
�
2; Z

�
3Þ 2 FA3;

8><>: ) ðX�; Y�; Z�3Þ 2 FA3: ð78Þ
Moreover, since all constraints of model P3 exist in model P2, it can be concluded that
ðX�2;Y
�
2; Z

�
3Þ 2 FA2: ð79Þ
Fig. 2. The considered network in the illustrative example.



Table 3
Commodity demand and injured people (units) at nodes.

Time 4 7 9 14 17 24

Node N7 N8 N9 N7 N8 N9 N7 N8 N9 N7 N8 N9 N7 N8 N9 N7 N8 N9

A1 60 80 24 54 96 30 80 100 36 100 75 48 80 70 40 68 60 38

Â1 6 8 2 5 10 3 8 10 4 10 8 5 8 7 4 7 6 4

A2 50 30 20 44 40 35 60 50 30 40 45 40 30 50 26 20 35 16bA2
5 3 2 5 4 4 6 5 3 4 5 4 3 5 3 2 4 2

H1 20 32 11 14 20 7 10 15 5 – 13 – 7 7 6 3 9 5bH1
2 3 1 1 2 1 1 2 1 – 1 – 1 1 1 1 1 1

H2 28 32 30 22 25 36 17 23 27 – – 21 9 15 18 6 12 9bH2
3 3 3 2 3 4 2 2 3 – – 2 1 2 2 1 1 1

Table 4
Commodity supply (units).

Time 1 3 8 11 15 19

Com. A1 bA1
A1 bA1

A1 bA1
A1 bA1

A1 bA1
A1 bA1

N1 30 2 20 1 0 0 80 4 0 0 0 0
N4 20 1 0 0 80 4 40 2 50 3 100 5
N11 40 3 75 3 0 0 100 5 0 0 0 0
N13 30 2 0 0 50 3 0 0 80 4 0 0
N16 25 2 0 0 90 4 60 3 40 2 30 2

Com. A2 bA2
A2 bA2

A2 bA2
A2 bA2

A2 bA2
A2 bA2

N1 40 2 0 0 30 2 0 0 0 0 20 1
N4 30 2 20 1 0 0 0 0 70 4 45 2
N11 50 3 0 0 55 3 50 2 0 0 0 0
N13 10 1 25 2 0 0 20 1 50 3 0 0
N16 20 1 30 2 0 0 0 0 0 0 60 3

Table 5
Hospitals’ capacity levels (persons/period).

Time 1 3 8 11 15 19

Com. H1 bH1
H1 bH1

H1 bH1
H1 bH1

H1 bH1
H1 bH1

N4 40 2 – – 30 2 – – – – 30 2
N5 20 1 – – – – 15 1 – – – –
N10 15 1 – – 15 1 – – – – – –
N11 25 1 20 1 – – – – 10 1 – –
N16 30 2 – – – – 15 1 – – – –

Com. H2 bH2
H2 bH2

H2 bH2
H2 bH2

H2 bH2
H2 bH2

N4 60 3 – – 15 1 30 2 30 2 – –
N5 30 2 – – 20 1 – – 10 1 – –
N10 20 1 – – – – 20 1 – – 20 1
N11 40 2 – – – – 20 1 – – – –
N16 30 2 – – 25 1 – – 30 1 30 2

Table 6
Vehicles capacity for commodity and injured people (units).

DV(v) CC(v) CW(v) Vehicle

0 50 45 V1

0 250 200 V2

5 30 25 V3

2 0 0 V4
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Therefore, according to Eq. (79) and equality of X�2; X� and Y�2; Y�, it is deduced that X�;Y�; Z�3
� �

2 FA2. Moreover, since
FA2 # FA; X�;Y�; Z�3

� �
2 FA. Now, because f3 Z�3

� �
< f3ðZ�Þ; Z� cannot be the optimal solution of the SRMLM. This conclusion con-

tradicts the assumption of optimality of Z⁄. Thus,
Table 7
Weight

Pr(h

0.65
0.35

Table 8
Numbe

Time

Node

V1

V2

V3

V4

Table 9
Model c

Mod

P1

P2

P3
f3 Z�3
� �

¥ f3ðZ�Þ: ð80Þ
Case D. f3ðZ�3Þ > f3ðZ�Þ,
In this case, since ðX�;Y�; Z�Þ 2 FA; X�2 ¼ X�; Y�2 ¼ Y� and f1ðY�Þ ¼ f �1 ¼ f 0�1 ; It is deduced that (X⁄,Y⁄,Z⁄) 2 FA2

(Because all constraints of model P2 except (71-I) exist in SRMLM, and constraint (71-I) is also satisfied because
f1ðY�Þ ¼ f 0�1 Þ. Furthermore, according to the constraints (71-II), (71-III) and (71-IV) in model P2
g2
i ðX

�; Z�Þ 6 b2
i

g4
i ðY

�; Z�Þ 6 b4
i

g5
i ðZ

�Þ 6 b5
i

8>><>>: ) ðX�; Y�; Z�Þ 2 FA3 ð81Þ
Moreover, since X�2 ¼ X� and Y�2 ¼ Y�, it is concluded that ðX�2;Y
�
2; Z

�Þ 2 FA3. Now, since f3ðZ�Þ < f3ðZ�3Þ; Z
�
3 could not be the opti-

mal solution of model P3. This result also contradicts with the assumption about the Z�3 optimality. Thus,
f3ðZ�3Þ� f3ðZ�Þ: ð82Þ
According to the results acquired in two cases C and D, it is deduced that f3ðZ�3Þ ¼ f3ðZ�Þ, and because of the single optimal
solution of SRMLM in this state, Z�3 ¼ Z�.

State II. SRMLM model has multiple optimal solutions.

The proof for the state of multiple optimal solutions is similar to the one presented for State I. The only difference is that
the equality of objectives does not necessarily result in the equality of variables. In other words, since SRMLM model has
several optimal solutions, the acquired solution by SMSRM methodology may equal to or be different with the solution
directly obtained in SRMLM model (X⁄,Y⁄,Z⁄). However, these acquired variables, X�2;Y

�
2; Z

�
3

� �
, surely result in the same

objective values which are the most important components in the earthquake response. h

6. An illustrative example

To illustrate how the proposed model works and what results it produces, consider an earthquake in a network with 16
nodes, 91 transportation arcs and four types of vehicles including 30 trucks, four trains, 10 helicopters and 30 ambulances.
, volume and priority of commodities and priority of injuries.

) Wnd. Pr(a) C(a) W(a) Com.

H1 0.3 2 1.5 A1

H2 0.7 1 1 A2

r of vehicles added to nodes.

1 2 3 5 6

N1 N4 N5 N10 N11 N13 N16 N10 N11 N13 N4 N5 N16 N1 N4 N13 N16 N4 N16

4 7 5 3 5 2 2 1 1
1 2 1 1

3 2 1 2 1 1
4 5 5 4 4 2 2 2 1 1

omplexity and computation times.

el #Constraints #Variables #Discrete variables Solution time (s)

56,400 178,069 172,032 29.343
112,231 427,993 417,792 404.169

99,840 24,576 24,576 10.372



Table 10
Transportation schedule for the injured (value of Y variables).

Time H1 H2 Vehicles Dest.

V3 V4

N4

10 5 – V3 = 1 N16

14 – 10 V3 = 2 N16

18 – 15 V3 = 3 N16

20 – 1 V3 = 1 N5

21 – 20 V3 = 4 N5

22 – 14 V3 = 3 N16

N7

3 2 – V4 = 1 N4

5 17 3 V4 = 10 N4

6 8 – V4 = 4 N4

7 5 7 V4 = 6 N4

8 2 – V4 = 1 N4

9 5 9 V4 = 7 N4

10 2 6 V4 = 4 N4

11 – 12 V4 = 6 N4

12 – 2 V4 = 1 N4

13 – 14 V4 = 7 N4

14 7 1 V4 = 4 N4

15 – 7 + 4 V4 = 6 N4

17 – 10 V4 = 5 N4

19 2 14 + 5 V4 = 11 N4

N8

3 25 5 V3 = 6 N4

5 – V3 = 1 N11

4 – 5 V3 = 1 N16

5 6 19 V3 = 5 N11

6 4 1 V3 = 1 N4

5 – V3 = 1 N16

7 2 8 V3 = 2 N4

8 + 6 1 V3 = 3 N11

8 3 2 V3 = 1 N4

7 + 2 1 V3 = 2 N11

9 7 + 4 4 V3 = 3 N11

– 15 V3 = 3 N4

10 11 8 + 1 V3 = 4 N11

11 1 14 V3 = 3 N11

12 19 1 V3 = 4 N4

– 5 V3 = 1 N16

13 – 15 V3 = 3 N4

N8

13 – 3 + 1 V3 = 1 N11

14 6 5 + 4 V3 = 3 N4

15 5 V3 = 1 N4

1 8 V3 = 2 N11

16 – 9 + 5 V3 = 3 N11

17 – 4 V3 = 1 N4

– 10 V3 = 2 N16

18 – 5 V3 = 1 N11

19 4 1 V3 = 1 N4

4 1 V3 = 1 N5

– 5 V3 = 1 N11

20 3 2 V3 = 1 N4

1 4 V3 = 1 N5

21 – 14 V3 = 3 N4

N9

4 6 – V4 = 3 N8

6 6 – V4 = 3 N8

7 5 3 V4 = 4 N8

8 4 4 V4 = 4 N8

9 – 8 V4 = 4 N8

10 – 14 V4 = 7 N8

11 – 6 V4 = 3 N8
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Table 10 (continued)

Time H1 H2 Vehicles Dest.

V3 V4

12 – 18 V4 = 9 N8

13 – 4 V4 = 2 N8

14 6 8 V4 = 7 N8

– 4 V4 = 2 N7

15 – 5 V4 = 3 N8

16 – 14 V4 = 7 N8

17 – 5 V4 = 3 N8

18 – 14 V4 = 7 N7

19 4 2 V4 = 3 N8

20 – 14 V4 = 7 N8

N11

5 5 – V3 = 1 N16

16 – 10 V3 = 2 N16

17 – 6 V4 = 3 N10

18 – 2 V4 = 1 N10

19 – 4 V4 = 2 N10

20 – 4 V4 = 2 N10
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Assume that the helicopters can carry both commodities and injured people, whereas trains and trucks can transport com-
modities, and ambulances are only authorized to carry injured people. In addition, there are five suppliers and five hospitals
located at nodes N1, N4, N11, N13, N15 and nodes N4, N5, N10, N11, N16 respectively (see Fig. 2).

Now, suppose that an earthquake strikes this network and nodes N7, N8 and N9 incur damage. There is no exact informa-
tion available on the damage and therefore demand for two types of commodities and numbers of injured people (for two
types of injuries) for the next 24 periods are presented in Table 3 by means of their averages and half ranges. Also, assume
that there are two possible scenarios on the network availability: a base scenario and worst case scenario. The base scenario
assumes that all roads of network are available and usable for response. However, the worst case scenario assumes that
roads N8–N9 and N7–N9 are blocked and unusable for response activities. This example, without loss of generality, assumes
that the commodities are measured by the number of items (and not e.g. in kg or liter). Furthermore, the uncertain available
commodities at supply nodes and hospitals’ capacities are presented in a similar fashion in Tables 4 and 5.

Tables 6–8 offer more information on the commodity and injury types, their priorities, vehicle properties and number of
vehicles added to various nodes during the planning horizon. Moreover, because the number of uncertain parameters such as
commodity needs, number of injured persons, and hospital capacities in the consecutive periods change over time, the num-
ber of allowed parameters for change is chosen variable, and assumed to be equal to half of all uncertain parameters, i.e.
Ct

i ¼ 0:5st
i .

As mentioned earlier, the proposed SMSRM methodology is used to hierarchically minimize the number of unserved in-
jured people, the amount of unsatisfied demand, and the number of used vehicles in a lexicographic fashion.

The three corresponding models P1, P2 and P3 are modeled in GAMS Rev 232 and solved by CPLEX 12.1 on a notebook
computer with a Pentium (R) 2.0 MHz CPU and 4 GB DDR3 RAM. More information on the model properties and their solu-
tion times are reported in Table 9.

The acquired schedule for injured people transportation, commodity carrying and vehicle movement are depicted in Ta-
bles 10–12.

Table 12 describes the vehicles’ movement schedule by means of three types of numbers. The bold numbers denote the
vehicles shipping the commodity; the italic and underlined numbers refer to the vehicles transporting injured people, and
the regular or plain numbers denote the empty vehicles. The obtained schedules for commodity dispatching moving injured
people and repositioning of vehicles in the first six periods are depicted in Fig. 3. As an example, consider node N4 at t = 1. At
this time, four ambulances are shipped to node N7, one helicopter is sent to node N1 and two helicopters are sent to node N11.
At time 3, one of the ambulances arriving at node N7 picks up two injured people type H 1, and carries them to the hospital
located at node N4. The remaining ambulances move to node N9. After arriving at node N9(t = 4), they pick up 6 injured peo-
ple type H1, and transport them to node N8. These injured people along with 19 injured people type H2 of node N8 are moved
by five helicopters to the hospital located at node N11 at t = 5. Then, these three ambulances come back to node N9. After
arriving at node N9(t = 6), they pick up 6 injured people type H 1, and moved them to node N8 for dispatching to the hospital
located at node N11 by helicopters. Moreover, the helicopter shipped to node N1 picks up 19 commodities type C2 after arriv-
ing at t = 2 and moves to node N8. The helicopters, at t = 2 at node N11, pick up 20 commodities of type C1 and 200 commod-
ities type C2, and move them to node N8. These three helicopters (two helicopters sent from N11 and one helicopter sent from
N1) along with three empty helicopters (sent from N4 at t = 2) pick up 25 injured people type H1 and 5 injured people type H2

from node N8 at t = 3, and transport them to the hospital located at node N4. As the second example, consider node N1 at t = 1.



Table 11
The commodities shipment in the acquired plan (value of X variables).

Time A1 A2 Vehicles Dest.

N1

1 29 – V1 = 1 N8

2 – 20 V1 = 1 N8

– 19 V3 = 1 N8

6 19 – V1 = 1 N8

8 – 4 V1 = 1 N8

– 25 V3 = 1 N8

11 77 – V1 = 4 N8

19 – 19 V3 = 1 N8

N4

2 19 + 18 29 V2 = 1 N7

24 23 V1 = 2 N7

6 – 18 V1 = 1 N7

8 77 – V1 = 4 N7

11 39 – V2 = 1 N7

12 15 – V1 = 1 N7

3 – V3 = 1 N8

15 45 – V3 = 3 N8

– 67 V1 = 2 N7

16 – 23 V2 = 1 N7

19 99 – V1 = 4 N7

– 45 V2 = 1 N7

20 29 – V1 = 2 N7

N8

3 25 19 + 12 V1 = 2 N9

6 – 13 + 8 V1 = 1 N9

9 – 30 V1 = 1 N9

11 – 18 V1 = 1 N9

13 99 43 V1 = 7 N9

16 40 V1 = 2 N9

20 – 7 V1 = 1 N9

N9

4 – 10 V1 = 1 N7

N10

3 – 9 V2 = 1 N11

10 3 – V1 = 1 N4

N11

1 18 23 V3 = 2 N4

N11

2 20 20 V3 = 2 N8

3 14 – V3 = 1 N8

4 – 9 V3 = 1 N8

5 – 5 V3 = 1 N8

6 74 – V3 = 5 N8

8 – 54 V3 = 3 N8

10 45 – V3 = 3 N8

11 51 48 V3 = 5 N8

12 45 19 V3 = 4 N8

14 43 – V3 = 3 N8

16 30 25 V3 = 3 N8

17 75 – V3 = 5 N8

N12

4 – 19 V1 = 1 N7

11 72 – V1 = 3 N7

N13

1 15 – V3 = 1 N8

14 – V1 = 1 N11

– 9 V1 = 1 N10

6 – 24 V3 = 1 N8

8 3 – V1 = 1 N10
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Table 11 (continued)

Time A1 A2 Vehicles Dest.

45 – V2 = 1 N11

11 – 19 V3 = 1 N11

15 75 – V1 = 3 N11

– 23 V3 = 1 N4

– 25 V3 = 1 N11

N16

1 24 – V3 = 2 N4

– 19 V1 = 1 N12

6 – 29 V3 = 2 N8

8 15 – V3 = 1 N8

72 – V1 = 3 N12

11 15 – V3 = 1 N4

43 – V1 = 2 N11

15 30 – V3 = 2 N11

19 29 – V3 = 2 N4

9 58 V3 = 3 N8
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At this time, two trucks pick up 29 commodities of type C1, and move them to node N8. Upon arrival at node N8(t = 3), they
pick up eight commodities of type C1 and 19 commodities of type C2 (some of the commodities were dispatched from node
N11 by two helicopters at t = 2), and move to node N9. At time t = 4,the trucks deliver 37 commodities type C1 and 9 com-
modities of type C2t node N9. The remaining commodities (10 commodities of type C2) are shipped to node N7 by a single
truck.

Further analysis on the obtained schedules identifies the emergency routes between demand points, suppliers and hos-
pitals summarized in Table 13. Each arc includes two sections, the first determining the origin and destination nodes, and the
second section specifying the mode of transportation. Codes 1 and 4 respectively denote transportation by truck and ambu-
lance, code 2 indicates transportation by train and code 3 by helicopter. For instance, the emergency route for transporting
commodities between supplier N11 and demand point N9 includes transporting from node N11 to node N8 by helicopter and
from node N8 to node N9 by truck. Moreover, the emergency routes for transporting wounded people from this node to the
hospital located at node N4 are (N9–N7,1)–(N7–N4,1) and (N9–N8,1)–(N8–N4,3). In the first route, wounded people are trans-
ported by ambulance. However in the second route, the wounded people are moved from node N9 to node N8 by ambulance
and from N8 to node N4 by helicopter. As it is shown in Table 14, most of these wounded people (about 90%) are transported
on the second path having less transporting time. This analysis also shows that all arcs of network are not similarly impor-
tant in the response because some arcs are used more for the commodity and wounded people transportation.

Table 14 shows the ten most important roads for commodity and wounded people transportation as well as weighted
percentage of commodity and wounded people using these roads. As an example, consider arc (N11–N8,3) having the largest
percentage of commodity transportation. This arc is part of two emergency routes: route from supplier N11 to the points of
demand N8 and N9. Moreover, arc (N8–N4,3) existing in two emergency routes (from node N8 to node N4 and from node N9 to
N4) has the highest percentage in moving wounded people. Now if the worst case occurs and road N9–N7 and N9–N8 are de-
stroyed, the current plan would be infeasible because several scheduled movements could not be performed.

Under these circumstances, the model should be re-optimized based on the newly obtained information on the transpor-
tation network availability. These new emergency routes and ten most important roads are shown in Tables 15 and 16
respectively.

The emergency routes are shown in bold in Table 15 and differ from those obtained for the base scenario. For instance,
since the commodity emergency route between nodes N11 and N9 is changed from (N11–N8,3)–(N8–N9,1) to (N11–N12,3)–
(N11–N12,1), the amount of commodity moved from node N11 to N8 by helicopter (N11–N8,3) decreases from 33.96% to
22.86%. This change increases the rank of arc (N11–N8,3) from one to two. Also, a change in the emergency route between
nodes N1 and N7 from (N1–N8,3)–(N8–N9,1)–(N9–N7,1) and (N1–N8,1)–(N8–N9,1)–(N9–N7,1) to (N1–N4,3)–(N4–N7,1) results
in an increase in commodity transport from node N4 to node N7 (20.62–26.81%), and changes its rank from three to one. Sim-
ilar effects can be observed for moving the injured. For example, emergency route for transporting wounded people between
nodes N9 and N4 changes from (N9–N7,1)–(N7–N4,1) and (N9–N8,1)–(N8–N4,3) to (N9–N12,1)–(N12–N4,3). As a result, the per-
centage of wounded people moved from arc (N8–N4,3) decreases from 31.33% to 20.30%, and its rank changes from one to
three. Moreover, since the wounded people dispatched to hospital located at node N16 often pass through node N12, its
importance in the disaster relief effort increases (increase of the fraction of wounded people moving from (N12–N16,3) from
2.44% to 17.39% and a new importance rank of 4).

As mentioned earlier, only half the uncertain parameters are allowed to exhibit their worst changes (that is Ct
i ¼ 0:5st

i Þ.
Therefore, it is expected that the transportation plans do not use the maximum anticipated capacities of the network entities.
In this case, it is expected that these plans use at most half of variable segments of capacities. Along the same lines, at most



Table 12
The vehicles movement in the acquired plan (value of Z variables).

Time Vehicles Dst.

N1

1 V1 = 2 N8

2 V1 = 1, V3 = 1 N8

3 V2 = 1 N3

6 V1 = 1 N8

8 V1 = 1, V3 = 1 N8

11 V1 = 4 N8

19 V3 = 1 N8

N3

8 V1 = 5 N1

N4

1 V3 = 1 N1

V4 = 4 N7

V3 = 2 N11

2 V1 = 2, V2 = 1 N7

V3 = 3 N8

V3 = 1 N11

3 V4 = 10 N7

4 V4 = 4 N7

V3 = 4 N8

V3 = 2 N11

5 V4 = 7 N7

V3 = 1 N8

6 V1 = 1, V4 = 1 N7

7 V3 = 1 N1

V1 = 2 N3

V4 = 10 N7

8 V1 = 4, V4 = 4 N7

V3 = 2 N8

9 V4 = 6 N7

V3 = 1 N8

10 V4 = 1 N7

V3 = 1 N11

V3 = 1 N13

V3 = 1 N16

11 V2 = 1, V4 = 7 N7

12 V1 = 1, V4 = 4 N7

V3 = 1 N8

13 V4 = 4 N7

V3 = 2 N8

V3 = 2 N11

14 V4 = 3 N10

V3 = 1 N13

V3 = 2 N16

15 V1 = 2, V4 = 6 N7

V3 = 3 N8

V4 = 1 N10

16 V2 = 1, V4 = 1 N7

V3 = 2 N11

17 V4 = 9 N7

N13

6 V3 = 1 N8

8 V1 = 1 N10

V2 = 1 N11

11 V3 = 1 N11

15 V3 = 1 N4

N4

18 V3 = 3 N16

19 V1 = 4,V2 = 1 N7

20 V3 = 1 N5

V1 = 2,V2 = 1 N7

22 V3 = 4 N5

V3 = 3 N16
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Table 12 (continued)

Time Vehicles Dst.

N5

1 V4 = 5 N4

N4 V4 = 2 N4

N7

3 V4 = 1 N4

V4 = 3 N9

5 V1 = 3 N3

V4 = 10 N4

6 V4 = 4 N4

7 V4 = 6 N4

V4 = 1 N9

8 V4 = 1 N4

9 V4 = 7 N4

V4 = 3 N9

V1 = 2 12
10 V4 = 4 N4

11 V4 = 6 N4

12 V4 = 1 N4

13 V4 = 7 N4

14 V2 = 1,V4 = 4 N4

15 V4 = 6 N4

16 V1 = 4 N4

17 V2 = 1,V4 = 5 N4

18 V2 = 1 N4

19 V4 = 11 N4

V4 = 7 N9

N8

3 V3 = 6 N4

V1 = 2 N9

V3 = 1 N11

4 V3 = 1 16

5 V4 = 3 N9

V3 = 5 N11

6 V3 = 1 N4

V1 = 1 N9

V3 = 1 N16

7 V3 = 2 N4

V4 = 3 N9

V3 = 3 N11

8 V3 = 1 N4

V4 = 4 N9

V3 = 2 N11

9 V3 = 3 N4

N13

15 V1 = 3,V3 = 1 N11

N16

1 V3 = 2 N4

V1 = 1,V4 = 4 N12

5 V3 = 1 N13

N8

9 V1 = 1,V4 = 4 N9

V3 = 3 N11

10 V4 = 3 N9

V3 = 4 N11

11 V1 = 1,V4 = 8 N9

V3 = 3 N11

12 V3 = 4 N4

(continued on next page)
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Table 12 (continued)

Time Vehicles Dst.

V4 = 3 N9

V3 = 1 N16

13 V3 = 3 N4

V1 = 7,V4 = 9 N9

V3 = 1 N11

14 V3 = 3 N4

V4 = 2 N9

15 V3 = 1 N4

V4 = 7 N9

V3 = 2 N11

16 V1 = 2,V4 = 3 N9

V3 = 3 N11

17 V3 = 1 N4

V4 = 7 N9

V3 = 2 N16

18 V3 = 1 N1

V4 = 3 N9

V3 = 1 N11

19 V3 = 1 N4

V3 = 1 N5

V3 = 1 N11

20 V3 = 1 N4

V3 = 1 N5

V1 = 1 N9

21 V3 = 3 N4

N9

4 V1 = 1 N7

V4 = 3 N8

6 V4 = 3 N8

7 V4 = 4 N8

8 V4 = 4 N8

9 V4 = 4 N8

10 V4 = 7 N8

11 V4 = 3 N8

12 V1 ¼ 4;V4 ¼ 9 N8

13 V4 = 2 N8

14 V4 = 2 N7

V4 = 7 N8

15 V4 = 3 N8

16 V4 = 7 N8

17 V1 = 1,V4 = 3 N8

18 V4 = 7 N7

6 V3 = 2 N8

V4 = 1 N12

7 V1 = 1 N11

8 V3 = 1 N8

V1 = 3 N12

11 V3 = 1 N4

N9

19 V4 = 3 N8

20 V4 = 7 N8

N10

1 V4 = 5 N4

2 V4 = 4 N4

3 V4 = 2 N4

V2 = 1 N11

10 V1 = 1 N4

16 V4 = 3 N11

17 V4 = 1 N11

18 V4 = 2 N11

19 V4 = 2 N11
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Table 12 (continued)

Time Vehicles Dst.

N11

1 V3 = 2 N4

V4 = 4 N10

2 V3 = 2 N8

V4 = 2 N10

3 V3 = 1 N8

4 V3 = 1 N8

5 V3 = 1 N8

V3 = 1 N16

6 V3 = 5 N8

8 V3 = 3 N8

9 V3 = 2 N8

10 V3 = 3 N8

11 V3 = 5 N8

12 V3 = 4 N8

13 V1 = 3 N13

14 V3 = 3 N8

16 V3 = 3 N8

V3 = 2 N16

17 V3 = 5 N8

V4 = 3 N10

V1 = 9 N13

18 V4 = 1 N10

19 V3 = 1 N8

19 V4 = 2 N10

20 V3 = 1 N4

V4 = 2 N10

N12
4 V1 = 1 N7

V4 = 4 N9

9 V4 = 1 N9

11 V1 = 3 N7

16 V1 = 2 N4

N13
1 V3 = 1 N8

V1 = 1 N10

V1 = 1 N11

11 V1 = 2 N11

14 V3 = 1 N13

15 V3 = 2 N11

17 V3 = 2 N4

19 V3 = 2 N4

V3 = 3 N8
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half of uncertain segment of demands ðbAÞ will be considered in schedule. A careful examination of Tables 8–11 confirms
these anticipations. For instance, Fig. 4 depicts remaining inventory for commodities C 1 and C 2 at node N1 and N13 during
the planning horizon. As Fig. 4 shows, the commodity inventory is at least half of cumulative uncertain supplies. As an illus-
tration, consider the cumulative uncertain supply of commodity C2 at node N1 in Fig. 4. The remaining inventory is 1 until
t = 7, 2 from t = 8 until t = 18, and 3 from t = 19 until the end of the planning horizon. (These inventories are clearly more than

or equal to the half of cumulative uncertain supply
P

a;l
bAa;l

� �
which is 2 until t = 7, 4 from t = 8 until t = 18, and 5 from t = 19

until the end of the planning horizon. Note that, these inventory values are calculated based on the difference between the
maximum of available supply (sum of deterministic supply and uncertain supply) and dispatched commodities from that
supplier.

Fig. 5 depicts the hospitals’ remaining capacities at nodes N9 and N11 during the planning horizon. Although most of the
injured people were sent to these hospitals, their remaining capacity does not become zero in any period, and at least half of
their cumulative uncertain capacity is unused. For example, the cumulative uncertain capacity for treating injuries of type

H1 at node N1
P

t
bH1lt

� �
is 2 until t = 4, is 4 from t = 5 until t = 11, and is 6 from t = 12 until the end of planning horizon. As

Fig. 5 shows, the unused capacity for treating injury type H1 at the hospital located at N1 is high in the first periods, is 2 at



Fig. 3. Logistics activities during the first six periods.
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t = 11 (which is half of cumulative uncertain capacity at t = 11), is also high from t = 12 until t = 20, and is 3 from t = 21 until
the end of planning horizon. In other words, the used capacity is also half of cumulative uncertain capacity from t = 21 until
t = 24.

Finally it is worth noting that, the proposed solution methodology is developed for problems which are moderately com-
plex (usually: 20–25 nodes, 100–150 transportation arcs and 150–200 different vehicles). In this case, this methodology can
solve the problem in only a few minutes by GAMS and CPLEX 12.1 (see Table 9).

7. Conclusions and future research

This paper contributes to the literature by proposing a novel mathematical model for assisting disaster managers in
scheduling the logistical activities for disaster relief materials and injured people in the face of demand and supply
uncertainties occurring in practice, and solving it by means of a robust approach for stochastic models with uncertain
right-hand sides based on Bertsimas and Sim (2004). The proposed model incorporates the key features extracted from



Table 13
Emergency routes for transportation in the main scenario.

Point of demands

N7 N8 N9

Emergency route for commodity transportation
Suppliers N1 (N1–N8,3)–(N8–N9,1)–(N9–N7,1) (N1–N8,1) (N1–N8,1)–(N8–N9,1)

(N1–N8,1)–(N8–N9,1)–(N9–N7,1) (N1–N8,3) (N1–N8,3)–(N8–N9,1)
N4 (N4–N7,1) (N4–N8,3) –

(N4–N7,2)
N11 (N11–N4,3)–(N4–N7,1) (N11–N8,3) (N11–N8,3)–(N8–N9,1)

(N11–N4,3)–(N4–N7,2)
N13 (N13–N4,3)–(N4–N7,2) (N13–N8,3) (N13–N8,3)–(N8–N9,1)
N16 (N16–N12,1)–(N12–N7,1) (N16–N8,3) –

(N16–N4,3)–(N4–N7,1)

Emergency route for wounded people transportation
Hospitals N4 (N7–N4,1) (N8–N4,3) (N9–N7,1)–(N7–N4,1)

(N9–N8,1)–(N8–N4,3)
N5 (N7–N4,1)–(N4–N5,3) (N8–N5,3) (N9–N8,1)–(N8–N5,3)
N10 – – (N9–N8,1)–(N8–N11,3)–(N11–N10,1)
N11 – (N8–N11,3) (N9–N8,1)–(N8–N11,3)
N16 (N7–N4,1)–(N4–N16,3) (N8–N16,3) (N9–N12,1)–(N12–N16,3)

(N9–N8,1)–(N8–N16,3)

Table 14
The most important roads in the main scenario.

Commodity transportation

Rank 1 2 3 4 5
Arc (N11–N8,3) (N8–N9,1) (N4–N7,1) (N4–N7,2) (N16–N8,3)
% Commodity 33.96% 21.37% 20.62% 12.57% 9.44%
Rank 6 7 8 9 10
Arc (N1–N8,1) (N1–N8,3) (N12–N7,1) (N16–N12,1) (N13–N11,3)
% Commodity 7.52% 6.11% 4.84% 4.84% 4.27%

Wounded people transportation
Rank 1 2 3 4 5
Arc (N8–N4,3) (N8–N11,3) (N7–N4,4) (N9–N8,4) (N4–N16,3)
% Wounded 31.33% 31.19% 30.40% 26.45% 7.85%
Rank 6 7 8 9 10
Arc (N4–N5,3) (N11–N16,3) (N9–N7,4) (N11–N10,4) (N8–N12,3)
% Wounded 3.42% 3.14% 2.93% 2.60% 2.44%

Table 15
Emergency routes for transportation in the worst case scenario.

Point of demands

N7 N8 N9

Emergency route for commodity transportation
Suppliers N1 (N1–N4,3)–(N4–N7,1) (N1–N8,1) (N1–N8,3)–(N8–N12,3)–(N12–N9,1)

(N1–N8,3) (N1–N8,1)–(N8–N12,3)–(N12–N9,1)
N4 (N4–N7,1) (N4–N7,2) (N4–N8,3) –
N11 (N11–N4,3)–(N4–N7,1) (N11–N8,3) (N11–N12,3)–(N12–N9,1)
N13 (N13–N4,3)–(N4–N7,1) (N13–N4,3)–(N4–N7,2) (N13–N8,3) (N13–N12,3)–(N12–N9,1)
N16 (N16–N4,3)–(N4–N7,1) (N16–N8,3) (N16–N12,1)–(N12–N9,1)

(N16–N12,3)–(N12–N9,1)

Emergency route for wounded people transportation
Hospitals N4 (N7–N4,1) (N8–N4,3) (N9–N12,1)–(N12–N4,3)

N5 – – –
N10 – – –
N11 – (N8–N11,3)(N8–N12,3)–(N12–N11,1) (N9–N12,1)–(N12–N11,1)
N16 (N7–N12,1)–(N12–N16,3) – (N9–N12,1)–(N12-N16,3)

M. Najafi et al. / Transportation Research Part E 49 (2013) 217–249 243



Table 16
The most important roads in the main scenario.

Commodity transportation
Rank 1 2 3 4 5
Arc (N4–N7,1) (N11–N8,3) (N12–N9,1) (N4–N7,2) (N1–N8,1)
% Commodity 26.81% 22.86% 20.03% 12.53% 8.98%
Rank 6 7 8 9 10
Arc (N16–N12,3) (N16–N12,1) (N13–N8,3) (N16–N4,3) (N13–N4,3)
% Commodity 8.08% 5.46% 5.41% 5.30% 4.20%

Wounded people transportation
Rank 1 2 3 4 5
Arc (N8–N11,3) (N7–N4,4) (N8–N4,3) (N12–N16,3) (N9–N12,4)
% Wounded 28.72% 28.59% 20.30% 17.39% 16.63%
Rank 6 7 8 9 10
Arc (N7–N12,4) (N12–N4,3) (N12–N11,3) (N1–N4,3) (N8–N1,3)
% Wounded 3.84% 2.72% 1.32% 0.96% 0.96%

Fig. 4. Remaining inventory for commodities C1 and C2 at nodes N1 and N13.

Fig. 5. Hospitals’ remaining capacity at nodes N4 and N11.
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previous studies, as summarized in Table 2. In particular, the proposed linear model includes three objective functions to
incorporate humanitarian and cost issues in managing both disaster relief commodities and injured people during the initial
phase of earthquake response. In addition, this model is optimized for emergency relief conditions under capacity and
demand uncertainty. Finally, this model is capable of routing and designing solutions for different capacitated transport
modes, including combined transport, which cannot be generated by previous models.

Human disaster planners want to serve as many injured people and respond to the requests for disaster relief materials as
quickly as possible during the emergency response phase with the lowest possible number of vehicles. Therefore an equiv-
alent multi objective stochastic model is presented that is capable of handling real-life uncertainties in an intuitively appeal-
ing way. Disaster response planners look for schedules that are robust in the face of demand and supply uncertainty. Hence, a
robust model formulation was developed and the method of Bertsimas and Sim (2004) was modified to produce the linear
robust counterpart of the stochastic model. A solution methodology was suggested for solving the acquired robust counter-
part of the stochastic model. This methodology converts the main model to three sub-models, and uses three steps to opti-
mize the three objectives of SRMLM model hierarchically.

Finally, an illustrative example was presented to show how the model is capable of capturing all crucial network infor-
mation and how the solution methodology generates robust solutions in acceptable computation times.

Further research will be aimed at optimizing the network structure which has been considered fixed in the current paper
and developing dynamic scheduling algorithms. Network data such as travel time, capacities and demands are uncertain, but
may also change over time. Moreover, natural disasters such as earthquake may destroy roads and which further increases the
need for dynamic scheduling based on real-time information. Therefore, developing an online scheduling model capable of
processing real-time data in planning logistics activities could significantly improve the disaster response process. Although
most problems occurring in practice can be solved by the proposed methodology, one may encounter very large problem in-
stances for which significantly larger computation times are required. Meta-heuristic solution approaches for the proposed
model therefore offer an interesting alternative to tackle these instances and to support dynamic decision-making.

Appendix A

Proposition 1. The robust counterpart of model (A.1)
Min z ¼
X

j

cjxj;X
j

aijxj 6
~bi 8i;

xj P 0 8j;

ðA:1Þ
is model (A.2).
Min z ¼
X

j

cjxj;

s:t: :
X

j

aijxj þ ziCi þ
X
s2si

pis 6 bi 8i;

zi þ pis P b̂is 8i; s 2 si;

xj P 0 8j;

pis P 0 8i; s 2 si;

zi P 0 8i:

ðA:2Þ
Proof. As mentioned in Section 3, since the acquired solution should be feasible in the worst case of defined condition, b
(si,Ci) would be defined as follows:
bðsi;CiÞ ¼ Max
fSi[ti jSi # si ;jSi j¼bCic;ti2sinSig

X
s2si

b̂is þ ðCi � bCicÞb̂iti

( )
; ðA:3Þ
and the related non-linear robust optimization model is,
Max w ¼
X

j

� cjxi;

X
j

aijxij þ Max
fSi[ti jSi #si ;jSi j¼bCic;ti2sinSig

X
s2si

b̂is þ ðCi � bCicÞb̂iti

( )
6 bi 8i;

xj P 0 8i; j:

ðA:4Þ
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Although all parameters of this proposed model (A.4) are deterministic, it is a nonlinear model. To convert this model to a
linear model, the linear equivalent of b(si,Ci) would bedefined. Obviously, b(si,Ci) in model (A.4) equals to the following lin-
ear optimization model:
bðsi;CiÞ ¼ Max
X
s2si

b̂isfis;X
s2si

fis 6 Ci;

0 6 fis 6 1 8s:

ðA:5Þ
Now, consider the dual of model (A.5), which is as follows,
Min Z0 ¼
X
s2si

pis þ ziCi;

zi þ pis P b̂is 8i; s 2 si;

pis P 0 8i; s 2 si;

zi P 0 8i:

ðA:6Þ
According to the strong duality theorem, since model (A.5) is feasible and bounded for all Ci 2 [0,jsij], then the dual model
(A.6) is also feasible, bounded and their optimal objective functions are equal. Thus,
b�ðsi;CiÞ ¼
X
s2si

p�is þ z�i Ci; ðA:7Þ
where, z�i þ p�is P b̂is. Now, by replacing model (A.6) in model (A.4), model (A.8) is obtained.
Min z ¼¼
X

j

cjxj;

s:t: :
X

j

aijxj þ ziCi þ
X
s2si

pis 6 bi 8i;

zi þ pis P b̂is 8i; s 2 si;

xj P 0 8j;

pis P 0 8i; s 2 si;

zi P 0 8i: �

ðA:8Þ
Proposition 2. An optimal solution of model (A.8) is feasible for model (A.1) if up to bCic parameters of ith right-hand side change
and one parameter ~biti

changes by ðCi � bCicÞb̂iti
.

Proof. Let us assume that x�ij is the optimal solution of model (A.8). According to its constraint
X
j

aijx�ij þ
X
s2si

p�is þ z�i Ci 6
X
s2si

bis ¼ bi: ðA:9Þ
Since
P

s2si
p�is þ z�i Ci ¼ b�ðsi;CiÞ, Eq. (A-9) could be rewritten as follows,
X

j

aijx�ij þ b�ðsi;CiÞ 6 bi )
X

j

aijx�ij 6 bi � b�ðsi;CiÞ: ðA:10Þ
Now, presume that bCic parameters of ith right-hand side change. In the worst case, all changes are in the negative direction.
That is, for bCic changed parameters
~bil ¼ bil � b̂il l 2 s0i # si; js0ij ¼ bCic; ðA:11Þ
and for the parameter ~biti
,

~biti
¼ biti

� ðCi � bCicÞb̂iti
: ðA:12Þ
Therefore, ~bi could be calculated as follows:
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~bi ¼
X
s2si

~bis ¼
X

s2sins0i[ti

bis þ
X
l2s0

i

ðbil � b̂ilÞ þ ðbiti
� ðCi � bCicÞb̂iti

Þ;

¼
X

s2sins0i[ti

bis þ
X
l2s0

i

bil �
X
l2s0

i

b̂il þ ðbiti
� ðCi � bCicÞb̂iti

Þ ¼
X

s2sins0i[ti

bis þ
X
l2s0

i

bil þ biti

0@ 1A� X
l2s0

i

b̂il þ ðCi � bCic�Þb̂iti

0@ 1A;

¼
X
s2si

bis �
X
l2s0

i

b̂il þ ðCi � bCicÞb̂iti

0@ 1A ¼X
s2si

bis � ĥi:

ðA:13Þ
Now, according to Eqs. (A.3) and (A.13),
b�ðsi;CiÞ ¼ Max
fSi[ti jjSi j¼bCic;ti2sinSig

X
s2Si

b̂is þ ðCi � bCicÞb̂iti

( )
; ðA:14Þ
which is always bigger than or equals to ĥi. So, we have
bi � ĥi P bi � b�ðsi;CiÞ ¼ ~bi: ðA:15Þ
Now, Eqs. (A.9) and (A.15) demonstrate that x�ij is a feasible solution of model (24). h
Proposition 3. If more than bCic parameters of ith right-hand side change, the probability of the ith constraint violation is less
than or equals to B(n,Ci) where,
Bðn;CiÞ ¼
1
2n ð1� lÞ

n
bmc

� �
þ
Xn

l¼bmcþ1

n
l

� �( )
; ðA:16Þ
where, n = jsijm = (Ci + n)/2 and l = m � bmc.
Proof. Let us assume that x�ij; S
�
i and t�i are the optimal solutions of model (A.8). So, the probability of violation of ith con-

straint could be calculated as follows:
P
X

j

aijx�ij >
~bi

 !
¼ P

X
j

aijx�ij >
X
s2si

~bis

 !
: ðA:17Þ
Also, parameter gis is defined as follows:
gis ¼
bis � ~bis

b̂is

; ðA:18Þ
Since the parameters ~bis have independent symmetric distributions, parameters gis are also independent and symmetrically
distributed in [�1,1]. So,
~bis ¼ bis � gisb̂is: ðA:19Þ
Therefore,
P
X

j

aijx�ij >
~bi

 !
¼ P

X
j

aijx�ij >
X
s2si

ðbis � gisb̂isÞ
 !

¼ P
X

j

aijx�ij >
X
s2si

bis �
X
s2si

gisb̂is

 !
¼ P

X
j

aijx�ij > bi �
X
s2si

gisb̂is

 !
:

ðA:20Þ
Since x�ij is the optimal solution of model (A.8), then
X
j

aijx�ij þ b�ðsi;CiÞ 6 bi: ðA:21Þ
So, according to Eqs. (A.17) and (A.21), it could be claimed that
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P
X

j

aijx�ij >
~bi

 !
6 P

X
j

aijx�ij >
X

j

aijx�ij þ bðt;CiÞ �
X
s2si

gisb̂is

 !
¼ P

X
s2S�i b̂is

þ ðCi � ½Ci�Þb̂it�i
�
X
s2si

gisb̂is < 0

0@ 1A
¼ P

X
s2S�i

ð1� gisÞb̂is þ ðCi � ½Ci�Þb̂it�i
�
X

l2sinS�i

gilb̂il < 0

0@ 1A
¼ P

X
l2sinS�i

gilb̂il >
X
s2S�i

ð1� gisÞb̂is þ ðCi � ½Ci�Þb̂it�i

0@ 1A: ðA:22Þ
Thus,
P
X

j

aijx�ij >
~bi

 !
6 P

X
l2sinS�i

gilb̂il >
X
s2S�i

ð1� gisÞb̂is þ ðCi � ½Ci�Þb̂it�i

0@ 1A; ðA:23Þ
Now, we choose r� ¼ arg max
s2si

fbisg. So,
P
X

l2sinS�i

gilb̂il >
X
s2S�i

ð1� gisÞb̂is þ ðCi � bCicÞb̂it�i

0@ 1A 6 P
X

l2sinS�i

gilb̂il > b̂ir�
X
s2S�i

ð1� gisÞ þ ðCi � bCicÞ

0@ 1A0@ 1A
¼ P

X
l2sinS�i

gilb̂il > b̂ir�
X
s2S�i

1�
X
s2S�i

gis þ ðCi � bCicÞ

0@ 1A0@ 1A
¼ P

X
l2sinS�i

gilb̂il > b̂ir� Ci �
X
s2S�i

gis

0@ 1A ¼ b̂ir�Ci �
X
s2S�i

gisb̂ir�

0@ 1A
¼ P

X
s2S�i

gis þ
X

l2sinS�i

gilb̂il=b̂ir� > Ci

0@ 1A; ðA:24Þ
or
P
X
s2si

giscis > Ci

 !
6 P

X
s2si

giscis P Ci

 !
; ðA:25Þ
where
cis ¼
1 if s 2 S�i
b̂is=b̂ir� if s R S�i

(
: ðA:26Þ
Therefore, the upper limit of probability of violation in the ith constraint is as follows:
P
X

j

aijx�ij >
~bi

 !
6 P

X
s2si

giscis P Ci

 !
ðA:27Þ
Finally, since parameters gis are also independent random variables distributed symmetrically in [�1,1]; Theorem 3 in
Bertsimas and Sim (2004) demonstrate that,
P
X
s2si

giscis P Ci

 !
6 Bðn;CiÞ: ðA:28Þ
Therefore,
P
X

j

aijx�ij >
~bi

 !
6 Bðn;CiÞ: � ðA:29Þ
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