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A B S T R A C T

Nonlinear vibro-acoustic behavior of cylindrical shell excited by an oblique incident plane sound wave under
primary resonances is analytically examined in this paper. Donnell’s nonlinear shallow shell theory is used
to model the cylindrical shell. Coupled nonlinear differential equations of the system are analytically derived
using Galerkin’s approach. The Multiple Scales Method is hence, employed to solve the corresponding nonlinear
equations. Then, the effects of crucial design parameters including incident sound wave amplitude, damping
ratio and thickness of the shell on the characteristics of the sound transmission loss are studied for different
resonance cases. In addition, the effect of detuning parameter on the bifurcation and behavior of the limit cycle
under primary resonance is examined. The results show that the detuning parameter is a bifurcation parameter
and Neimark–Sacker, flip, and period-3 bifurcations occur when this parameter is varied. Also, according to
the results, by getting away from the resonance frequencies, excitation level incorporates no significant effect
on the transmission loss of the shell.
. Introduction

Vibro-acoustic analysis of cylindrical shells has extensively been
nvestigated in the recent years because of their variety of engineering
pplications. Several cases may be addressed in aircraft, mechanical,
arine and automotive engineering. Different aspects of vibro-acoustic

ehavior of cylindrical shell have already been addressed in the liter-
ture. Noise transmission through and radiation from the cylindrical
hells were studied by many researchers. Daneshjou et al. [1] calculated
he transmission loss of a homogeneous isotropic thick-walled cylindri-
al shell due to an oblique plane wave. Oliazadeh and Farshidianfar [2]
sed exact analytical approach to investigate sound transmission losses
n double- and triple-walled thin cylindrical shells with varying air
ap sizes. A theoretical model was developed by Zhang et al. [3] to
nvestigate the effect of perforation on the sound transmission through
double-walled cylindrical thin shell excited by a plane wave. An ana-

ytical model based on statistical energy analysis theory was developed
nd experimentally validated by Oliazadeh et al. [4] to examine sound
ransmission through a thin-walled circular cylindrical shell. A precise
ransfer matrix method was developed by Wang et al. [5] to calculate
he sound radiation of submerged double-walled cylindrical shell with
niformly distributed annular plates and arbitrary boundary conditions.
he wave and finite element (WFE) method was developed by Kingan
t al. [6] for analyzing sound transmission through, and radiation from
n infinitely long cylindrical structure filled and surrounded by fluids.
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Sound transmission has also been investigated through sandwich
cylinders. Among these works, Magniez et al. [7] used the first-order
shear deformation theory to investigate the transmission loss of an
infinite multilayer cylinder composed of two orthotropic thin skins
separated by an isotropic polymer core. Using the three-dimensional
theory of elasticity, the acoustic wave transmission across an imperfect-
bonding double-walled sandwich cylinder with FGM-core was studied
by Talebitooti et al. [8].

Laminated composite cylindrical shell structures have widely been
used particularly in aerospace and marine industries due to their high
strength to weight ratio. Several studies have been carried out to
investigate transmission loss through these structures. For example,
Talebitooti et al. [9] used the Third-order Shear Deformation Theory to
investigate the transmission loss of the laminated composite cylindrical
shell in contrast to plane sound wave. The transmission loss of an
arbitrary thick infinite piezo-laminated cylindrical shell filled with
and submerged in compressible fluids was analytically estimated by
Rabbani et al. [10].

Effects of poroelastic material on sound transmission, particularly
in high frequencies, have been an interesting subject of studies in the
recent years. An analytical model was presented by Zhou et al. [11,12]
to investigate the effects of external mean flow and exterior turbulent
boundary layer on the transmission loss of a double shell lined with
poroelastic material. Liu and Hi [13] calculated the transmission loss
of random incidence in the diffuse field through double-shell sand-
wich composite structures with the poroelastic core. Using a mixed
ttps://doi.org/10.1016/j.ijnonlinmec.2021.103682
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Abbreviations

c Structural damping
𝑐1 Speed of sound in the external space
𝑐3 Speed of sound in the internal cavity
f External pressure
h Shell thickness
n,m Mode number
r Radial coordinates
t Time
u Axial displacements
v Circumferential displacements
w Radial displacements
x Axial coordinates
D Bending stiffness
E Young’s modulus of elasticity
F Stress Function
𝐻1
𝑛 Hankel function of first kind

𝐻2
𝑛 Hankel function of second kind

𝐽𝑛 Bessel function of first kind
𝐾1𝑟 Radial wave numbers
𝐾1𝑥 Axial wave numbers
L Shell length
𝑀𝑥 Bending moment per unit length
𝑁𝑥 Axial force per unit length
𝑃 𝑛𝑟 Amplitudes of the reflected waves
𝑃 𝑛𝑡 Amplitudes of the transmitted waves
𝑃0 Amplitude of the incident wave
R Mean shell radius
𝑊 𝐼 Incident sound power
𝑊 𝑇
𝑛 𝑛th term of transmitted sound powers

𝜈 Poisson’s ratio
𝜌 Shell density
𝜌1 Density of air in the external space
𝜌3 Density of air in the internal cavity
𝜃 Circumferential coordinates
𝛺 Frequency of the incident wave
𝜔 Natural frequency
𝜎 detuning parameter
𝜓 Incident wave angle
𝜁 Damping ratio

‘‘Biot–Shell’’ analytical model, Magniez et al. [14] calculated sound
transmission through orthotropic sandwich cylinders with a poroelastic
core. An extended full method presented based on Biot theory with
considering the 3-D wave propagation was developed by Talebitooti
et al. [15] to investigate the transmission loss of poroelastic cylin-
drical shell. They [16] also used this method to study the effect of
external subsonic flow on sound transmission through poroelastic cylin-
drical shell. Using non-dominated sorting genetic algorithm, Talebitooti
et al. [17] optimized sound transmission through the laminated com-
posite cylindrical shell with sandwiching a layer of porous material as
an intermediate layer.

A large number of studies are available on nonlinear vibrations of
circular cylindrical shells. Pellicano et al. [18] investigated non-linear
vibration of simply supported circular cylindrical shells considering
geometric nonlinearities and the effect of viscous structural damping.
Using five classical non-linear shell theories, the response of an empty
and simply supported circular cylindrical shell subjected to radial
harmonic excitation has been computed by Amabili [19]. The nonlinear
 a

2

vibrations of empty or fluid-filled circular cylindrical shells, clamped
at both ends and subjected to a radial harmonic force excitation,
have been studied by Karagiozis et al. [20]. Using both Donnell’s
non-linear theory retaining in-plane displacements and the Sanders–
Koiter non-linear theory, Amabili et al. [21] investigated the effect
of geometric imperfections on nonlinear stability of circular cylin-
drical shells conveying incompressible fluid. Sanders–Koiter nonlinear
shell theory was used by Kurylov and Amabili [22] to investigate
Large-amplitude (geometrically nonlinear) forced vibrations of circu-
lar cylindrical shells with different boundary conditions. Alijani and
Amabili [23] investigated geometrically nonlinear forced vibrations
of water-filled arbitrary laminated circular cylindrical shells using the
Amabili–Reddy nonlinear higher-order shear deformation theory. In an
experimental–numerical study, Amabili et al. [24] examined nonlinear
vibrations of a water-filled circular cylindrical shell subjected to radial
harmonic excitation in the spectral neighborhood of the lowest reso-
nances, using a seamless aluminum sample. Semi-analytical solution
of nonlinear vibrations of circular cylindrical shell made of carbon
nanotube fiber-reinforced composite excited by a radial harmonic force
with considering structural damping was studied by Yadav et al. [25].

In most of the literatures reviewed above, although Sound Transmis-
sion Loss (STL) across various types of shells has been studied, there
has been no investigation on the nonlinear acoustic behavior of the
cylindrical shell in contrast to plane sound wave, so far. Therefore, in
this paper an analytical approach is developed to study the nonlinear
vibro-acoustic behavior of the cylindrical shells based on Donnell’s
theory. Then, the frequency–response for the radial deflection of the
shell and transmission loss through the cylindrical shell due to an
oblique plane sound wave are calculated using the method of multiple
scales (MMS). MMS has also been used in other nonlinear vibro-acoustic
problems to calculate frequency–response of structure vibration and
transmission loss [26–28].

The rest of the current paper is organized as follows. In Section 2,
the vibro-acoustic model of the sound transmission through a cylindri-
cal shell is presented. Then using the Galerkin method based on the
boundary conditions of the system, nonlinear differential equations of
the system are achieved. In Section 3, the method of multiple scales is
utilized to determine the frequency–response of the shell due to sound
wave excitation. In Section 4, results of the current model and their
discussion and parametric studies are presented. Finally, conclusions
are provided in Section 5.

2. System model

Fig. 1 shows the geometry and coordinate system of a cylindrical
shell with thickness ℎ, mean surface radius 𝑅 and length 𝐿 considered
for the study in this paper. The cylindrical shell is described with the
coordinates (𝑥, 𝑟, 𝜃), in which 𝑥, 𝑟 and 𝜃 denote the axial, radial and
ircumferential coordinates, respectively. Also, the displacements in
he axial, radial and circumferential directions are denoted by 𝑢 (𝑥, 𝜃),
(𝑥, 𝜃) and 𝑣 (𝑥, 𝜃), respectively.
Using the Donnell’s nonlinear shallow shell theory, partial dif-

erential equations of the shell radial motion can be represented as
ollows [29]:

∇4𝑤 + 𝑐ℎ�̇� + 𝜌ℎ�̈� = 𝑓 + 1
𝑅
𝜕2𝐹
𝜕𝑥2

+ ( 𝜕2𝐹
𝑅2𝜕𝜃2

𝜕2𝑤
𝜕𝑥2

− 2 𝜕2𝐹
𝑅𝜕𝑥𝜕𝜃

𝜕2𝑤
𝑅𝜕𝑥𝜕𝜃

+ 𝜕2𝐹
𝜕𝑥2

𝜕2𝑤
𝑅2𝜕𝜃2

) (1)

where 𝐷 = 𝐸ℎ3∕
[

12
(

1 − 𝜈2
)]

is bending stiffness and 𝐸 and 𝜈 are
oung’s modulus of elasticity and Poisson’s ratio, respectively. Also, 𝑐
nd 𝜌 represent the structural damping and density of the shell material
nd 𝑓 denotes the external pressure load. The in-plane stress function



A.H. Orafa, M.M. Jalili and A.R. Fotuhi International Journal of Non-Linear Mechanics 130 (2021) 103682

f

𝑤

a

Fig. 1. Schematic representation of the double-walled cylindrical shell system.
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𝐹 is represented as follows:

1
𝐸ℎ

∇4𝐹 = − 1
𝑅
𝜕2𝑤
𝜕𝑥2

+ [
(

𝜕2𝑤
𝑅𝜕𝑥𝜕𝜃

)2
− 𝜕2𝑤
𝜕𝑥2

𝜕2𝑤
𝑅2𝜕𝜃2

] (2)

The radial displacement 𝑤 can be expanded by the eigenmodes as
ollows:

(𝑥.𝜃.𝑡) =
[

𝐴𝑚𝑛 (𝑡) 𝑐𝑜𝑠 (𝑛𝜃) + 𝐵𝑚𝑛 (𝑡) 𝑠𝑖𝑛 (𝑛𝜃)
]

sin
(

𝜆𝑚𝑥
)

+
�̃�
∑

𝑚=1
𝐴𝑚0 (𝑡) sin

(

𝜆𝑚𝑥
)

(3)

Where n and 𝑚 are respectively the number of circumferential waves
nd longitudinal half-waves, 𝜆𝑚 = 𝑚𝜋∕𝐿 and 𝑡 is the time. Also, 𝐴𝑚𝑛 (𝑡),
𝐵𝑚𝑛 (𝑡) and 𝐴𝑚0 (𝑡) denote the generalized coordinates that are unknown
functions of t. Considering �̃� = 3 and 𝑚 = 1, the following mode
expansion is obtained [30].

𝑤 =
[

𝐴1𝑛(𝑡)𝑐𝑜𝑠 (𝑛𝜃) + 𝐵1𝑛(𝑡)𝑠𝑖𝑛 (𝑛𝜃)
]

sin
( 𝜋
𝐿
𝑥
)

+ 𝐴10 (𝑡)
[

3 sin
( 𝜋
𝐿
𝑥
)

− sin
( 3𝜋
𝐿
𝑥
)]

(4)
3

where 𝑛 ≥ 1. The boundary conditions of the shallow cylinder are
defined as follows:
𝑤 = 0 at 𝑥 = 0; 𝑥 = 𝐿
𝑀𝑥 = −𝐷

{

𝜕2𝑤
𝜕𝑥2

+ 𝜈 𝜕2𝑤
𝑅2𝜕𝜃2

}

= 0 at 𝑥 = 0; 𝑥 = 𝐿
𝑁𝑥 = 0 at 𝑥 = 0; 𝑥 = 𝐿
𝑣 = 0 at 𝑥 = 0; 𝑥 = 𝐿

here 𝑀𝑥 and 𝑁𝑥 are the bending moment and the axial force per unit
ength, respectively.

Substituting Eq. (4) into Eq. (2), the following expression for stress
unction 𝐹 can be written.

= 𝐹𝑝 + 𝐹ℎ (5)

n which 𝐹𝑝 and 𝐹ℎ are the particular and homogeneous solutions of
q. (2) and given by [30]:

𝐹𝑝 = 𝑐1 (𝑡) cos (𝑛𝜃) + 𝑐2 (𝑡) sin (𝑛𝜃) + 𝑐3 (𝑡) sin
(

𝜆1𝑥
)

+ 𝑐4 (𝑡) cos (𝑛𝜃) sin
(

𝜆1𝑥
)

+ 𝑐5 (𝑡) sin (𝑛𝜃) sin
(

𝜆1𝑥
)

+ 𝑐6 (𝑡) cos
(

2𝜆1𝑥
)

+ 𝑐7 (𝑡) cos (2𝑛𝜃) + 𝑐8 (𝑡) sin (2𝑛𝜃)

+ 𝑐 𝑡 cos 𝑛𝜃 cos
(

2𝜆 𝑥
)

+ 𝑐 𝑡 sin 𝑛𝜃 cos
(

2𝜆 𝑥
)

9 ( ) ( ) 1 10 ( ) ( ) 1
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+ 𝑐11 (𝑡) sin
(

3𝜆1𝑥
)

+ 𝑐12 (𝑡) cos (𝑛𝜃) cos
(

4𝜆1𝑥
)

+ 𝑐13 (𝑡) sin (𝑛𝜃) cos
(

4𝜆1𝑥
)

(6a)

𝐹ℎ = 1
2
𝑥2

{

−𝐸ℎ𝐴10 (𝑡)
16

3𝜆1𝐿𝑅
+ [𝐴1𝑛 (𝑡)2 + 𝐵1𝑛 (𝑡)2]

𝑛2

8𝑅2

+ 2
𝐿
𝜆1[𝑐3 (𝑡) + 3𝑐11 (𝑡)]

}

(6b)

here functions 𝑐𝑖 are defined in Appendix A.
The incident plane wave 𝑃𝐼 which satisfies the homogeneous

elmholtz equation in the cylindrical coordinate system can be defined
s [31]

𝐼 = 𝑃0
∞
∑

𝑛=0
𝜖𝑛 (−𝑗)𝑛 𝐽𝑛(𝐾1𝑟𝑟) cos(𝑛𝜃)𝑒𝑗(𝛺𝑡−𝐾1𝑥𝑥) (7)

here 𝑃0 is the amplitude of the incident sound wave, 𝜖𝑛 is the
eumann factor in which 𝜖𝑛 = 1 for 𝑛 = 0 and 𝜖𝑛 = 2 for 𝑛 = 1, 2, 3,…

and 𝐽𝑛 is the Bessel function of the first kind. Also, 𝐾1𝑟 and 𝐾1𝑥 are the
radial and axial wave numbers, respectively, and can be determined as
follows:

𝐾1𝑟 =
𝛺
𝑐1

cos (𝜓) ;𝐾1𝑥 = 𝛺
𝑐1

sin (𝜓) (8)

in which𝛺 is the frequency of the incident wave, 𝜓 is the incident angle
and 𝑐1 is the speed of sound in the external space of the shell. Also, the
waves reflected and transmitted from and through the cylindrical shell
can be represented as:

𝑃𝑅 =
∞
∑

𝑛=0
𝑃 𝑛𝑟 𝐻

2
𝑛 (𝐾1𝑟𝑟) cos(𝑛𝜃)𝑒𝑗(𝛺𝑡−𝐾1𝑥𝑥) (9)

𝑃𝑇 =
∞
∑

𝑛=0
𝑃 𝑛𝑡 𝐻

1
𝑛 (𝐾3𝑟𝑟) cos(𝑛𝜃)𝑒𝑗(𝛺𝑡−𝐾3𝑥𝑥) (10)

where 𝑃 𝑛𝑟 and 𝑃 𝑛𝑡 are the unknown complex amplitudes of the reflected
and transmitted waves, respectively. The longitudinal and radial sound
wavenumbers in the transmission field can be expressed as:

𝐾3𝑥 = 𝐾1𝑥;𝐾3𝑟 =

√

(

𝛺
𝑐3

)2
−𝐾2

3𝑥 (11)

here 𝑐3 is the speed of sound in the internal cavity of the shell.
Moreover, the relationships between pressure and radial displace-

ent can be expressed as:
𝜕(𝑃𝐼 + 𝑃𝑅)

𝜕𝑟
= −𝜌1

𝜕2𝑤
𝜕𝑡2

at𝑟 = 𝑅 (12)

𝜕(𝑃𝑇 )
𝜕𝑟

= −𝜌3
𝜕2𝑤
𝜕𝑡2

at𝑟 = 𝑅 (13)

Substituting Eqs. (4), (7) and (9) into Eq. (12) and applying the
Galerkin method with suitable weighting functions 𝑍𝑠, two algebraic
equations can be obtained for the variables 𝑃 𝑛𝑟 and 𝑃 0

𝑟 . The weighting
unctions 𝑍𝑠 are defined as:

𝑍𝑠 = 𝑐𝑜𝑠 (𝑛𝜃) 𝑠𝑖𝑛
( 𝜋
𝐿
𝑥
)

; 𝑠 = 1

𝑍𝑠 = 𝑠𝑖𝑛 (𝑛𝜃) 𝑠𝑖𝑛
( 𝜋
𝐿
𝑥
)

; 𝑠 = 2

𝑍𝑠 = 3𝑠𝑖𝑛
( 𝜋
𝐿
𝑥
)

− 𝑠𝑖𝑛
( 3𝜋
𝐿
𝑥
)

; 𝑠 = 3

(14)

The results of the Galerkin projection can be represented as:

{2𝑃0 (−𝑗)𝑛 𝐽 ′
𝑛
(

𝐾1𝑟𝑟
)

+ 𝑃 𝑛𝑟 𝐻
2′
𝑛
(

𝐾1𝑟𝑟
)

}
𝐿𝜋2𝑒𝑗𝛺𝑡

(

1 + 𝑒−𝑗𝐾1𝑥𝐿
)

𝜋2 − 𝐿2𝐾2
1𝑥

= −
𝜌1𝜋𝐿
2

�̈�1𝑛 (𝑡) 𝑠 = 1
0 𝑠 = 2

{𝑃0𝐽 ′
0
(

𝐾1𝑟𝑟
)

+ Pr 0𝐻2′
0
(

𝐾1𝑟𝑟
)

}( −1
9𝜋2 − 𝐿2𝐾2

1𝑥

+ 1
𝜋2 − 𝐿2𝐾2

1𝑥

)

× 6𝐿𝜋2𝑒𝑗𝛺𝑡(1 + 𝑒−𝑗𝐾1𝑥𝐿) = −10𝜌1𝜋𝐿�̈�10 (𝑡) 𝑠 = 3

(15)
4

Solving Eq. (15), variables 𝑃 𝑛𝑟 and 𝑃 0
𝑟 can be obtained as follows:

𝑃 𝑛𝑟 = −
𝜌1𝜋𝐿
2

(𝜋2 − 𝐿2𝐾2
1𝑥)𝑒

−𝑗𝛺𝑡

𝐿𝜋2
(

1 + 𝑒−𝑗𝐾1𝑥𝐿
)

𝐻2′
𝑛
(

𝐾1𝑟𝑟
) �̈�1𝑛 (𝑡)

−
2𝑃0 (−𝑗)𝑛 𝐽 ′

𝑛
(

𝐾1𝑟𝑟
)

𝐻2′
𝑛
(

𝐾1𝑟𝑟
) 𝑠 = 1

Pr 0 =
−10𝜌1𝜋𝐿�̈�10 (𝑡) 𝑒−𝑗𝛺𝑡

6( −1
9𝜋2−𝐿2𝐾2

1𝑥
+ 1

𝜋2−𝐿2𝐾2
1𝑥
)𝐿𝜋2(1 + 𝑒−𝑗𝐾1𝑥𝐿)𝐻2′

0
(

𝐾1𝑟𝑟
)

−
𝑃0𝐽 ′

0
(

𝐾1𝑟𝑟
)

𝐻2′
0
(

𝐾1𝑟𝑟
) 𝑠 = 3

(16)

Similarly, with substituting Eqs. (4) and (10) into Eq. (13) and using
the Galerkin projection with weighting functions 𝑍𝑠, the following
relations are obtained:

𝑃 𝑛𝑡 𝐻
1′
𝑛 (𝐾3𝑟𝑟)

𝐿𝜋2𝑒𝑗𝛺𝑡
(

1 + 𝑒−𝑗𝐾3𝑥𝐿
)

𝜋2 − 𝐿2𝐾2
3𝑥

= −
𝜌3𝜋𝐿
2

�̈�1𝑛 (𝑡) 𝑠 = 1

0 𝑠 = 2

𝑃 0
𝑡 𝐻

1′
0
(

𝐾3𝑟𝑟
)

(

−1
9𝜋2 − 𝐿2𝐾2

3𝑥

+ 1
𝜋2 − 𝐿2𝐾2

3𝑥

)

×6𝐿𝜋2𝑒𝑗𝛺𝑡
(

1 + 𝑒−𝑗𝐾3𝑥𝐿
)

= −10𝜌3𝜋𝐿�̈�10 (𝑡) 𝑠 = 3

(17)

Eq. (17) can be solved for the variables 𝑃 𝑛𝑡 and 𝑃 0
𝑡 as function of

generalized coordinates.

𝑃 𝑛𝑡 = −
𝜌3𝜋𝐿
2

(𝜋2 − 𝐿2𝐾2
3𝑥)𝑒

−𝑗𝛺𝑡

𝐿𝜋2
(

1 + 𝑒−𝑗𝐾3𝑥𝐿
)

𝐻1′
𝑛 (𝐾3𝑟𝑟)

�̈�1𝑛 (𝑡) 𝑠 = 1

𝑃 0
𝑡 =

−10𝜌3𝜋𝐿𝑒−𝑗𝛺𝑡

6( −1
9𝜋2−𝐿2𝐾2

3𝑥
+ 1

𝜋2−𝐿2𝐾2
3𝑥
)𝐿𝜋2(1 + 𝑒−𝑗𝐾3𝑥𝐿)𝐻1′

0 (𝐾3𝑟𝑟)
�̈�10 (𝑡) 𝑠 = 3

(18)

External pressure load 𝑓 can be expressed as follows:

𝑓 = 𝑃 1
𝐼 + 𝑃 1

𝑅 − 𝑃 3
𝑇 (19)

Substituting Eqs. (7), (9) and (10) into Eq. (19), the following
relation can be obtained for pressure load 𝑓 .

𝑓 =
∞
∑

𝑛=0
[𝑃0𝜖𝑛 (−𝑗)𝑛 𝐽𝑛

(

𝐾1𝑟𝑟
)

+ 𝑃 𝑛𝑟 𝐻
2
𝑛
(

𝐾1𝑟𝑟
)

− 𝑃 𝑛𝑡 𝐻
1
𝑛 (𝐾3𝑟𝑟)] cos(𝑛𝜃)𝑒𝑗(𝜔𝑡−𝐾1𝑥𝑥) (20)

Applying Galerkin projection with weighting functions 𝑍𝑠 to Eq. (1),
the following system of second-order ordinary differential equations are
obtained:

�̈�1𝑛 (𝑡) + 𝑃1𝐴1𝑛 (𝑡) = 𝑃2𝑐�̇�1𝑛 (𝑡) + 𝑃3𝐴1𝑛𝐴10 + 𝑃4𝐴3
1𝑛 + 𝑃4𝐴1𝑛𝐵

2
1𝑛

+ 𝑃5𝐴1𝑛𝐴
2
10 + 𝑃6 cos

(

𝛺𝑡 + ∅1
)

(21)
�̈�1𝑛 (𝑡) +𝑄1𝐵1𝑛 (𝑡) = 𝑄2𝑐�̇�1𝑛 (𝑡) +𝑄3𝐵1𝑛𝐴10 +𝑄4𝐵

3
1𝑛

+ 𝑄4𝐵1𝑛𝐴
2
1𝑛 +𝑄5𝐵1𝑛𝐴

2
10 (22)

�̈�10 (𝑡) +𝛱1𝐴10 (𝑡) = 𝛱2𝑐�̇�10 (𝑡) +𝛱3𝐴
2
1𝑛 +𝛱3𝐵

2
1𝑛

+ 𝛱4𝐴
2
1𝑛𝐴10 +𝛱4𝐵

2
1𝑛𝐴10 +𝛱6𝑐𝑜𝑠

(

𝛺𝑡 + ∅2
)

(23)

The coefficients of Eqs. (21) to (23) are defined in Appendix B.

3. Solution method

In this section, the method of multiple scales (MMS) is employed to
find an analytical solution for the frequency–response of the proposed
nonlinear vibro-acoustic model. In this approach, the response can be
presented by an expansion which is a function of multiple-independent
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𝐷

𝑢

𝑢

𝐷

scales 𝑇𝑖. According to this method, the solution of Eqs. (21) to (23)
can be represented by an expansion having the form [32]

𝐴1𝑛
(

𝑇0
)

= 𝜀𝑢11
(

𝑇0; 𝑇1; 𝑇2
)

+ 𝜀2𝑢12
(

𝑇0; 𝑇1; 𝑇2
)

+ 𝜀3𝑢13(𝑇0; 𝑇1; 𝑇2)

𝐵1𝑛
(

𝑇0
)

= 𝜀𝑢21
(

𝑇0; 𝑇1; 𝑇2
)

+ 𝜀2𝑢22
(

𝑇0; 𝑇1; 𝑇2
)

+ 𝜀3𝑢23(𝑇0; 𝑇1; 𝑇2)

𝐴10
(

𝑇0
)

= 𝜀𝑢31
(

𝑇0; 𝑇1; 𝑇2
)

+ 𝜀2𝑢32
(

𝑇0; 𝑇1; 𝑇2
)

+ 𝜀3𝑢33(𝑇0; 𝑇1; 𝑇2)

(24)

where 𝜀 is a small dimensionless parameter and 𝑇𝑛 = 𝜀𝑛𝑡 are time scales.
Hence the time derivative is transformed into
𝑑
𝑑𝑡

= 𝐷0 + 𝜀𝐷1 +…

𝑑2

𝑑𝑡2
= 𝐷0

2 + 2𝐷0𝐷1𝜀 + (𝐷2
1 + 2𝐷0𝐷2)𝜀2 +… (25)

n which 𝐷𝑛 =
𝜕
𝜕𝑇𝑛

.
Considering 𝑐 = 𝜀2𝑐, 𝑃6 = 𝜀3𝑃6 and 𝛱6 = 𝜀3�̂�6, substituting

Eqs. (24) and (25) into Eqs. (21)–(23) and equating the coefficients of
identical powers of 𝜀 to zero, one acquires:

𝜀1:

𝐷0
2𝑢11 + 𝑃1𝑢11 = 0 (26a)

𝐷0
2𝑢21 +𝑄1𝑢21 = 0 (26b)

0
2𝑢31 +𝛱1𝑢31 = 0 (26c)

𝜀2:

𝐷0
2𝑢12 + 𝑃1𝑢12 = 𝑃3𝑢31𝑢11 − 2𝐷0𝐷1𝑢11 (27a)

𝐷0
2𝑢22 +𝑄1𝑢22 = 𝑄3𝑢31𝑢21 − 2𝐷0𝐷1𝑢21 (27b)

𝐷0
2𝑢32 +𝛱1𝑢32 = −2𝐷0𝐷1𝑢31 +𝛱3𝑢11

2 +𝛱3𝑢21
2 (27c)

𝜀3:

𝐷0
2𝑢13 + 𝑃1𝑢13 = −2𝐷0𝐷1𝑢12 −

(

𝐷2
1 + 2𝐷0𝐷2

)

𝑢11 + 𝑃2𝑐𝐷0𝑢11 + 𝑃3𝑢32𝑢11
+ 𝑃3𝑢12𝑢31 + 𝑃4𝑢311 + 𝑃4𝑢11𝑢21

2 + 𝑃5𝑢11𝑢312

+ 𝑃6𝑐𝑜𝑠
(

𝛺𝑡 + ∅1
)

(28a)
𝐷0

2𝑢23 +𝑄1𝑢23 = −2𝐷0𝐷1𝑢22 −
(

𝐷2
1 + 2𝐷0𝐷2

)

𝑢21 +𝑄2𝑐𝐷0𝑢21
+ 𝑄3𝑢21𝑢32 +𝑄3𝑢22𝑢31 +𝑄4𝑢21

3 +𝑄4𝑢21𝑢11
2

+ 𝑄5𝑢21𝑢31
2 (28b)

𝐷0
2𝑢33 +𝛱1𝑢33 = −2𝐷0𝐷1𝑢32 −

(

𝐷2
1 + 2𝐷0𝐷2

)

𝑢31 +𝛱2𝑐𝐷0𝑢31
+ 2𝛱3𝑢11𝑢12 + 2𝛱3𝑢21𝑢22 +𝛱4𝑢11

2𝑢31 +𝛱4𝑢21
2𝑢31

+ �̂�6𝑐𝑜𝑠
(

𝛺𝑡 + ∅2
)

(28c)

The solution of Eq. (26) can be presented as follows:

𝑢11 = 𝑋1
(

𝑇1.𝑇2
)

𝑒𝑗𝜔1𝑇0 +𝑋1
(

𝑇1.𝑇2
)

𝑒−𝑗𝜔1𝑇0 (29a)

21 = 𝑋2
(

𝑇1.𝑇2
)

𝑒𝑗𝜔2𝑇0 +𝑋2
(

𝑇1.𝑇2
)

𝑒−𝑗𝜔2𝑇0 (29b)

31 = 𝑋3
(

𝑇1.𝑇2
)

𝑒𝑗𝜔3𝑇0 +𝑋3
(

𝑇1.𝑇2
)

𝑒−𝑗𝜔3𝑇0 (29c)

in which

𝜔1 =
√

𝑃1, 𝜔2 =
√

𝑄1, 𝜔3 =
√

𝛱1 (30)

Substituting the solutions into Eq. (27) yields:

0
2𝑢12 + 𝜔1

2𝑢12 = 𝑃3
(

𝑋3
(

𝑇1.𝑇2
)

𝑋1
(

𝑇1.𝑇2
)

𝑒𝑗(𝜔1+𝜔3)𝑇0

+𝑋3
(

𝑇1.𝑇2
)

𝑋1
(

𝑇1.𝑇2
)

𝑒𝑗(𝜔1−𝜔3)𝑇0
)

− 2𝑗𝜔1𝐷1𝑋1
(

𝑇1.𝑇2
)

𝑒𝑗𝜔1𝑇0 + 𝑐𝑐 (31a)
𝐷0

2𝑢22 + 𝜔2
2𝑢22 = 𝑄3

(

𝑋3
(

𝑇1.𝑇2
)

𝑋2
(

𝑇1.𝑇2
)

𝑒𝑗(𝜔2+𝜔3)𝑇0

+ 𝑋3
(

𝑇1.𝑇2
)

𝑋2
(

𝑇1.𝑇2
)

𝑒𝑗(𝜔2−𝜔3)𝑇0
)

− 2𝑗𝜔2𝐷1𝑋2
(

𝑇1.𝑇2
)

𝑒𝑗𝜔2𝑇0 + 𝑐𝑐 (31b)

𝐷0
2𝑢32 + 𝜔3

2𝑢32 = +𝛱3(𝑋1
2 (𝑇1.𝑇2

)

𝑒2𝑗𝜔1𝑇0 +𝑋1𝑋1)

+ 𝛱 (𝑋 2 (𝑇 .𝑇
)

𝑒2𝑗𝜔2𝑇0 +𝑋 𝑋 )
3 2 1 2 2 2

5

− 2𝑗𝜔3𝐷1𝑋3
(

𝑇1.𝑇2
)

𝑒𝑗𝜔3𝑇0 + 𝑐𝑐 (31c)

To eliminate secular terms from Eq. (31), we must put 𝐷1𝑋1 = 0,
𝐷1𝑋2 = 0 and 𝐷1𝑋3 = 0. It follows that:

𝑢12 =
𝑃3𝑋1𝑋3

𝜔1
2 − (𝜔1 + 𝜔3)2

𝑒𝑗(𝜔1+𝜔3)𝑇0 +
𝑃3𝑋1𝑋3

𝜔1
2 − (𝜔1 − 𝜔3)2

𝑒𝑗(𝜔1−𝜔3)𝑇0 + 𝑐𝑐 (32a)

𝑢22 =
𝑄3𝑋2𝑋3

𝜔2
2 − (𝜔2 + 𝜔3)2

𝑒𝑗(𝜔2+𝜔3)𝑇0 +
𝑄3𝑋2𝑋3

𝜔2
2 − (𝜔2 − 𝜔3)2

𝑒𝑗(𝜔2−𝜔3)𝑇0 + 𝑐𝑐 (32b)

𝑢32 =
𝛱3𝑋1

2

𝜔3
2 − 4𝜔1

2
𝑒𝑗(2𝜔1𝑇0) +

𝛱3𝑋1𝑋1

𝜔3
2

+
𝛱3𝑋2

2

𝜔3
2 − 4𝜔2

2
𝑒𝑗(2𝜔2𝑇0) +

𝛱3𝑋2𝑋2

𝜔3
2

+ 𝑐𝑐

(32c)

To study the case of primary resonance and state closeness of 𝛺 to 𝜔1,
the detuning parameter 𝜎1 is introduced as follows:

Ω = 𝜔1 + 𝜀2𝜎1 (33)

Substituting Eqs. (29), (32) and (33) into Eq. (28), and eliminating
secular terms from the resulting equations yields

− 2𝑗𝜔1𝐷2𝑋1 + 𝑃2𝑐𝑗𝜔1𝑋1 + 𝑃3

(

2𝛱3𝑋1
2𝑋1

𝜔3
2

+
2𝛱3𝑋1𝑋2𝑋2

𝜔3
2

+
𝛱3𝑋1

2𝑋1

𝜔3
2 − 4𝜔1

2
+

𝑃3𝑋1𝑋3𝑋3

𝜔1
2 − (𝜔1 + 𝜔3)2

+
𝑃3𝑋1𝑋3𝑋3

𝜔1
2 − (𝜔1 − 𝜔3)2

)

+ 𝑃4(3𝑋1
2𝑋1 + 2𝑋1𝑋2𝑋2) + 𝑃5(2𝑋1𝑋3𝑋3)

+ 1
2
𝑃6𝑒

𝑗(𝜎1𝑇2+∅1) = 0 (34)

− 2𝑗𝜔2𝐷2𝑋2 +𝑄2𝑐𝑗𝜔2𝑋2 +𝑄3

(

2𝛱3𝑋2𝑋1𝑋1

𝜔3
2

+
2𝛱3𝑋2

2𝑋2

𝜔3
2

+
𝛱3𝑋2

2𝑋2

𝜔3
2 − 4𝜔2

2
+

𝑄3𝑋2𝑋3𝑋3

𝜔2
2 − (𝜔2 + 𝜔3)2

+
𝑄3𝑋2𝑋3𝑋3

𝜔2
2 − (𝜔2 − 𝜔3)2

)

+ 𝑄4(3𝑋2
2𝑋2 + 2𝑋2𝑋1𝑋1) +𝑄5(2𝑋2𝑋3𝑋3) = 0 (35)

− 2𝑗𝜔3𝐷2𝑋3 +𝛱2𝑐𝑗𝜔3𝑋3 + 2𝛱3

(

𝑃3𝑋1𝑋1𝑋3

𝜔1
2 − (𝜔1 + 𝜔3)2

+
𝑃3𝑋1𝑋1𝑋3

𝜔1
2 − (𝜔1 − 𝜔3)2

+
𝑄3𝑋3𝑋2𝑋2

𝜔2
2 − (𝜔2 + 𝜔3)2

+
𝑄3𝑋3𝑋2𝑋2

𝜔2
2 − (𝜔2 − 𝜔3)2

)

+ 𝛱4

(

2𝑋3𝑋1𝑋1 + 2𝑋3𝑋2𝑋2

)

= 0 (36)

Inserting the polar form 𝑋𝑖 = 1
2𝑥𝑖𝑒

𝑗𝛽𝑖 into Eqs. (34) to (36) and
separating the real and imaginary parts, we have:

8𝜔1𝑥1
(

𝜎1 − 𝛾1′
)

+ 𝑃3

(

2𝛱3𝑥13

𝜔3
2

+
2𝛱3𝑥1𝑥22

𝜔3
2

+
𝛱3𝑥13

𝜔3
2 − 4𝜔1

2

+
𝑃3𝑥1𝑥32

𝜔1
2 − (𝜔1 + 𝜔3)2

+
𝑃3𝑥1𝑥32

𝜔1
2 − (𝜔1 − 𝜔3)2

)

+ 𝑃4(3𝑥13 + 2𝑥1𝑥22)

+ 𝑃5(2𝑥1𝑥32) + 4𝑃6𝑐𝑜𝑠(𝛾1) = 0 (37a)

− 2𝜔1𝑥1
′ + 𝑃2𝑐𝜔1𝑥1 + 𝑃6𝑠𝑖𝑛(𝛾1) = 0 (37b)

8𝜔2𝑥2𝛽2
′ +𝑄3

(

2𝛱3𝑥2𝑥12

𝜔3
2

+
2𝛱3𝑥23

𝜔3
2

+
𝛱3𝑥23

𝜔3
2 − 4𝜔2

2
+

𝑄3𝑥2𝑥32

𝜔2
2 − (𝜔2 + 𝜔3)2

+
𝑄3𝑥2𝑥32

𝜔2
2 − (𝜔2 − 𝜔3)2

)

+𝑄4(3𝑥23 + 2𝑥2𝑥12) +𝑄5(2𝑥2𝑥32) = 0 (38a)

− 2𝜔2𝑥2
′ +𝑄2𝑐𝜔2𝑥2 = 0 (38b)

8𝜔3𝑥3𝛽3
′ + 2𝛱3

(

𝑃3𝑥3𝑥12

𝜔1
2 − (𝜔1 + 𝜔3)2

+
𝑃3𝑥3𝑥12

𝜔1
2 − (𝜔1 − 𝜔3)2

+
𝑄3𝑥3𝑥22

𝜔2
2 − (𝜔2 + 𝜔3)2

+
𝑄3𝑥3𝑥22

𝜔2
2 − (𝜔2 − 𝜔3)2

)

+ 𝛱
(

2𝑥 𝑥 2 + 2𝑥 𝑥 2) = 0 (39a)
4 3 1 3 2
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E
a

𝑔

w

𝑔

𝑥

l
s
z
c
a

𝜆

w
(

4

s
t

𝑇

5

r
e
c
r
7

𝑓
w

− 2𝜔3𝑥3
′ +𝛱2𝑐𝜔3𝑥3 = 0 (39b)

where 𝛾1 = 𝜎1𝑇2 − 𝛽1 + ∅1. The steady-state motions correspond to
𝑥1′ = 𝑥2′ = 𝑥3′ = 𝛾1′ = 𝛽′2 = 𝛽′3 = 0. It follows that 𝑥2 = 𝑥3 = 0
nd

𝜔1𝑥1𝜎1 + 𝑃3

(

2𝛱3𝑥13

𝜔3
2

+
𝛱3𝑥13

𝜔3
2 − 4𝜔1

2

)

+ 𝑃4
(

3𝑥13
)

+ 4𝑃6 cos
(

𝛾1
)

= 0

(40a)

𝑃2𝑐𝜔1𝑥1 + 4𝑃6 sin
(

𝛾1
)

= 0 (40b)

liminating 𝛾1 from Eq. (40) leads to the frequency–response equation
s follows:

1
2𝑥1

6 + 16𝜔1𝑔1𝜎1𝑥1
4 +

(

64𝜔1
2𝜎1

2 + 16𝑃 2
2 𝑐

2𝜔1
2) 𝑥1

2 = 16𝑃 2
6 (41)

here

1 = 𝑃3

(

2𝛱3

𝜔3
2
+

𝛱3

𝜔3
2 − 4𝜔1

2

)

+ 3𝑃4 (42)

Similar to case 𝛺 ≈ 𝜔1, the frequency–response equation for the
case Ω = 𝜔3 + 𝜀2𝜎3 can be obtained as follows:
(

64𝜔3
2𝜎23 + 16𝛱2

2𝑐2𝜔3
2) 𝑥3

2 = 16�̂�2
6 (43)

Where 𝛱6 = 𝜀3�̂�6.
Here, the stability of different portions of the response curve about

𝛺 ≈ 𝜔1 are determined by investigating the nature of the singular
points of Eq. (37). To accomplish this, consider the following relations:

𝑥1 = 𝑥10 + 𝑥11, 𝛾1 = 𝛾10 + 𝛾11 (44)

Substituting Eq. (44) into Eq. (37), expanding for small 𝑥11 and 𝛾11,
noting that 𝑥10 and 𝛾10 satisfy Eq. (37), and keeping linear terms in 𝑥11
and 𝛾11, one obtains:

𝛾11
′ =

(

𝑔1𝑥10
4𝜔1

−
𝑃6𝑐𝑜𝑠(𝛾10)
2𝜔1𝑥102

)

𝑥 −
𝑃6𝑠𝑖𝑛(𝛾10)
2𝜔1𝑥10

𝛾11 (45)

11
′ =

𝑃2𝑐
2
𝑥 +

𝑃6𝑐𝑜𝑠(𝛾10)
2𝜔1

𝛾11

Therefore, the stability of the steady-state motion can be investi-
gated based on the eigenvalues of the coefficients matrix on the right-
hand side of Eq. (45). Using Eq. (40b), one can obtain the following
eigenvalue equation:
|

|

|

|

|

|

𝜆 −
𝑃2𝑐
2

−

(

𝑔1𝑥0
4𝜔1

−
𝑃6𝑐𝑜𝑠(𝛾0)
2𝜔1𝑥02

)

−
𝑃6𝑐𝑜𝑠(𝛾0)

2𝜔1
𝜆 −

𝑃2𝑐
2

|

|

|

|

|

|

= 0 (46)

Expanding the determinant yields:

𝜆2 − 2
(

𝑃2𝑐
2

)

𝜆 +
(

𝑃2𝑐
2

)2
−

(

𝑔1𝑥0
4𝜔1

−
𝑃6𝑐𝑜𝑠

(

𝛾0
)

2𝜔1𝑥02

)(

𝑃6𝑐𝑜𝑠
(

𝛾0
)

2𝜔1

)

= 0

(47)

The stability of the singular points and hence the steady-state so-
utions are determined by the real parts of the roots of Eq. (47). The
teady-state solution is stable if the real part of each root is negative or
ero. If the real part of at least one of the roots is positive definite, the
orresponding steady-state solution is unstable. The roots of Eq. (47)
re as follows:

=
(

𝑃2𝑐
2

)

±

√

√

√

√

(

𝑃2𝑐
2

)2
+

(

𝑔1𝑥0
4𝜔1

−
𝑃6𝑐𝑜𝑠

(

𝛾0
)

2𝜔1𝑥02

)(

𝑃6𝑐𝑜𝑠
(

𝛾0
)

2𝜔1

)

(48)

Note that
(

𝑃2𝑐
2

)

< 0; hence, the steady-state motions are unstable
hen

𝑔1𝑥0
4𝜔1

−
𝑃6𝑐𝑜𝑠

(

𝛾0
)

2𝜔1𝑥02

)(

𝑃6𝑐𝑜𝑠
(

𝛾0
)

2𝜔1

)

> 0 (49)
6

. Sound transmission loss

The sound transmission loss is defined as the ratio of the incident
ound powers and the transmitted sound powers through unit length of
he shell along the axial direction.

𝐿 = 10 log10(
𝑊 𝐼

∑∞
𝑛=0𝑊 𝑇

𝑛
) (50)

in which 𝑊 𝐼 is incident sound power and 𝑊 𝑇
𝑛 is the 𝑛th term of

transmitted sound powers corresponding to the 𝑛th mode and can be
defined as follows [33]:

𝑊 𝐼 = 𝑅
𝑃02𝑐𝑜𝑠(𝜓)
𝜌1𝑐1

(51)

𝑊 𝑇
𝑛 = 1

2
𝑅𝑒𝑎𝑙{∫

2𝜋

0 ∫

𝐿

0
𝑃 3
𝑇
𝜕𝑤
𝜕𝑡
𝑑𝑥𝑑𝜃} (52)

For case 𝛺 ≈ 𝜔1, substituting Eqs. (4) and (10) into Eq. (52) yields:

𝑊 𝑇
𝑛 = 1

2
𝑅𝑒𝑎𝑙{∫

1

0 ∫

2𝜋

0
𝑃 𝑛𝑡 𝐻

1
𝑛
(

𝐾3𝑟𝑟
)

cos (𝑛𝜃) 𝑒𝑗(𝛺𝑡−𝐾3𝑥𝑥) 𝜕
𝜕𝑡

× (
[

𝐴1𝑛(𝑡)𝑐𝑜𝑠 (𝑛𝜃) + 𝐵1𝑛(𝑡)𝑠𝑖𝑛 (𝑛𝜃)
]

sin
( 𝜋
𝐿
𝑥
)

+ 𝐴10 (𝑡)
[

3 sin
( 𝜋
𝐿
𝑥
)

− sin
( 3𝜋
𝐿
𝑥
)]

)𝑑𝜃𝑑𝑥} (53)

Performing some mathematical calculations, Eq. (53) can be rewrit-
ten as follows:

𝑊 𝑇
𝑛 = 𝜋

2
𝑅𝑒𝑎𝑙{∫

1

0
𝑃 𝑛𝑡 𝐻

1
𝑛
(

𝐾3𝑟𝑟
)

𝑒𝑗(𝛺𝑡−𝐾3𝑥𝑥)�̇�1𝑛(𝑡) sin
( 𝜋
𝐿
𝑥
)

𝑑𝑥} (54)

Substituting Eq. (18) into Eq. (48) yields:

𝑊 𝑇
𝑛 = −

𝜋𝜌3
4
𝑅𝑒𝑎𝑙{�̇�1𝑛(𝑡)�̈�1𝑛 (𝑡)

𝐻1
𝑛
(

𝐾3𝑟𝑟
)

𝐻1′
𝑛 (𝐾3𝑟𝑟)

} (55)

Similar to case 𝛺 ≈ 𝜔1, from Eq. (24), 𝐴1𝑛 (𝑡) can be calculated as
follows:

𝐴1𝑛 (𝑡) = 𝜀𝑢11 = 𝜀𝑋1
(

𝑇2
)

𝑒𝑗𝜔1𝑡 + 𝜀𝑋1
(

𝑇2
)

𝑒−𝑗𝜔1𝑇0 =

𝜀
( 1
2
𝑥1𝑒

𝑗(𝜔1𝑡+𝛽1) + 1
2
𝑥1𝑒

−𝑗(𝜔1𝑡+𝛽1)
)

= 𝜀𝑥1 cos
(

𝜔1𝑡 + 𝛽1
)

(56)

Substituting Eq. (56) into Eq. (55), the following relation can be
obtained for 𝑊 𝑇

𝑛 :

𝑊 𝑇
𝑛 =

|

|

|

|

|

𝜋𝜌3
8

Ω3𝑢2𝑅𝑒𝑎𝑙{
𝐻1
𝑛
(

𝐾3𝑟𝑟
)

𝐻1′
𝑛 (𝐾3𝑟𝑟)

}
|

|

|

|

|

(57)

Therefore, according to Eqs. (51) and (57) the transmission loss of
the shell is calculated as follows:

𝑇𝐿 = 10 log10(
8𝑃02𝑐𝑜𝑠(𝜓)

|

|

|

|

𝜋𝜌1𝑐1𝜌3Ω3𝑢2𝑅𝑒𝑎𝑙{ 𝐻
1
𝑛 (𝐾3𝑟𝑟)

𝐻1′
𝑛 (𝐾3𝑟𝑟)

}
|

|

|

|

) (58)

Similar to case 𝛺 ≈ 𝜔1, the transmission loss for the case Ω ≈ 𝜔3
can be obtained as follows:

𝑇𝐿 = 10 log10(
2𝑃02𝑐𝑜𝑠(𝜓)

|

|

|

|

|

5𝜋𝜌1𝑐1𝜌3Ω3𝑢2𝑅𝑒𝑎𝑙{
𝐻1

0 (𝐾3𝑟𝑟)
𝐻1′

0 (𝐾3𝑟𝑟)
}
|

|

|

|

|

) (59)

. Simulations, results and discussion

To validate the model presented in this paper, its predictions of the
esponses are compared with the numerical results reported by Amabili
t al. [30]. In this reference, nonlinear vibration of a simply supported
ircular cylindrical shell was analyzed. The shell characteristics in this
eference are: 𝐿 = 0.2 m, 𝑅 = 0.1 m, ℎ = 0.247 × 10−3 m, 𝐸 =
1.02 × 109 Pa, 𝜌 = 2796 kg

m3 , 𝜐 = 0.31. Also, the damping ratio and
the amplitude of the external excitation are considered 2𝜁 = 0.001 and
𝑚𝑛 = 0.0012ℎ2𝜌𝜔2

𝑚𝑛, respectively, and the driven mode is associated
ith 𝑛 = 6 and 𝑚 = 1. In Fig. 2, the frequency–response of the driven

mode is shown and compared to that obtained by Amabili et al. [30].
This figure shows good agreement between the present results and
those presented in Ref. [30].
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Fig. 2. Comparison of the frequency–response of the shell for the driven mode (𝑛 = 6 and 𝑚 = 1) with Amabili et al. [30].
able 1
he basic simulation conditions used in the present study.
Parameter Value Parameter Value

𝑃0 210 dB (8.6 MPa) L 1 (m)
𝜌1 0.9389 (Kg/m3) h 1 (mm)
𝜌3 1.21 (Kg/m3) 𝝂 0.3
𝑐1 388 (m/s) 𝜌 7750 (Kg/m3)
𝑐3 343 (m/s) 𝜓 45◦

E 190 (GPa) 𝜁 0.001
R 0.1 (m)

5.1. Primary resonance and stability analysis

In this section, effects of different parameters on frequency–response
function of the system are investigated. The specifications of the
cylindrical shell investigated in this paper are listed in Table 1.

To verify the MMS approximate solution of the nonlinear equations
presented in this paper, the approximate analytical solution for shell
response induced by the acoustic excitations is compared with the
numerical one, which was calculated using the Runge–Kutta method.
Fig. 3 shows the steady state time response of 𝐴11 when the frequency
of the incident sound wave is close to 𝜔1. Also, the comparison between
the MMS and numerical solutions for the steady state time response
of 𝐴10 about excitation frequency 𝜔3 is presented in Fig. 4. As dis-
played in these figures, good agreement is observed between the MMS
approximation and numerical solutions.

For the case of primary resonance (𝛺 ≈ 𝜔1), the frequency–response
of the shell vibration and its transmission loss are presented in Figs. 5
and 6, respectively. Also, using the steady state time response for
different frequencies of the incident sound wave calculated by the
Runge–Kutta numerical method, the frequency–response and TL are
obtained and depicted in these figures. The comparison between the
numerical and the MMS approximation results shows good correlation.

As it is observed in Fig. 7, increasing the detuning parameter from
point A to point C leads to a gradual increase in steady state vibration
amplitude. At point C, upward jump occurs to point D. After that,
by increasing the detuning parameter, vibration amplitude decreases.
On the other hand, as 𝜎 is decreased from point E to F, steady state
ibration amplitude increases; and at point F, there is a downward
ump to the point B. According to Fig. 8, the bending of the TL curve
bout the natural frequency of the linear system (𝜔 ) is responsible for
1

7

a jump phenomenon in this curve. If the detuning parameter is slowly
decreased from point E, a jump from point F to point B takes place.
Also, if this parameter is increased from point A, a jump from point C
to point D takes place and point D is the resonant frequency.

Frequency responses of vibration and transmission loss curves of the
cylindrical shell in the primary resonance case 𝛺 ≈ 𝜔1 for different inci-
dent sound amplitudes are illustrated in Fig. 9(a) and (b), respectively.
According to these figures, for the primary resonance cases, with an
increase in the incident sound amplitude, the amplitude of steady state
vibration increases. It can be observed from Fig. 9(b) that in the case
of increasing the detuning parameter, increasing the amplitude of the
incident wave increases the transmission loss through the shell about
the natural frequency of the linear system. By getting away from this
frequency, excitation level would incorporate no effect on the TL. In
the case of decreasing the detuning parameter, the amplitude of the
incident wave has no effect on the minimum transmission loss through
the cylindrical shell. However, with an increase in the incident sound
amplitude, the frequency of the minimum transmission loss decreases.

Based on stability analysis Eq. (49) for nonlinear model, the real
part of the eigenvalues of fixed points are plotted in Fig. 9(c). As it is
shown, some fixed points of the system with incident sound amplitudes
190, 200 and 210 dB produce purely real eigenvalues with opposite
signs. Hence, the responses corresponding to those saddle points are
unstable and unrealizable in any experiment. Consequently, the shell
vibration under incident sound amplitude 190–210 dB experiences
jump phenomena by considering nonlinear model.

The effect of damping ratio on frequency–response function and
transmission loss for primary resonance case 𝛺 ≈ 𝜔1 is presented in
Fig. 10(a) and (b), respectively, in which the damping ratio is defined
as 𝜁 = 𝑐

(2𝜌𝜔1)
. According to these figures in both cases, with the increase

in damping ratio, the bending of the curves decreases and resonance
frequency approaches the natural frequency of the linear system. It
is observed that utilizing material with more damping ratio has pos-
itive effects on the noise reduction of the cylindrical shell around the
natural frequency 𝛺 ≈ 𝜔1. As depicted in Fig. 10(b), increasing the
damping ratio from 0.001 to 0.01 increases the maximum value of
the transmission loss about 27% and 111% for the case of increasing
and decreasing the detuning parameter, respectively, which is a great
achievement because sound transmits easily through a structure at its
critical frequency. Therefore, obtaining high transmission loss at this
specific frequency is vital from the acoustical point of view. Based on



A.H. Orafa, M.M. Jalili and A.R. Fotuhi International Journal of Non-Linear Mechanics 130 (2021) 103682

s
p
c
H
e
t
j

o
r
t
t
m
b
a
r
i

Fig. 3. Comparison of the numerical integration result with the MMS result for the steady state time response of 𝐴11 about the natural frequency of the linear system (𝜔1).
Fig. 4. Comparison of the numerical integration result with the MMS result for the steady state time response of 𝐴10 about the natural frequency of the linear system (𝜔3).
tability analysis Eq. (49) for nonlinear model, the eigenvalues of fixed
oints are plotted in Fig. 10(c). As shown in this figure, the responses
orresponding to the saddle points for 𝜁 = 0.001 and 0.005 are unstable.
owever for 𝜁 = 0.01, fixed points of the system produce purely real
igenvalues with negative signs. Hence, the responses corresponding to
his nodal points are stable. It shows that more probability of occurring
ump phenomena exists for the shell with less damping ratio.

Figs. 11(a) and (b) respectively represent the effect of shell thickness
n frequency–response and transmission loss of the shell in primary
esonance case 𝛺 ≈ 𝜔1. According to these figures, increasing the shell
hickness increases the transmission loss coefficient. For instance, when
he thickness is doubled, there is an increase of 17 to 37 dB in the
aximum value of the acoustic transmission loss. However, it should

e noted that increasing the shell thickness is not always a proper
pproach to reach better sound insulation ability because of the design
estriction in the weight, costs and construction procedure. Hence, this
mportant parameter should be considered along with other design
8

parameters such as length, radius and material properties to achieve
the optimal performance in all engineering aspects.

As shown in Fig. 11(b), for the shell with less thickness, minimum
transmission loss for the case of increasing the detuning parameter is
more than the TL for the case of decreasing the detuning parameter.
However for the shell with more thickness, minimum transmission
losses for increasing and decreasing the detuning parameter are the
same. According to Fig. 11(b), with an increase in the shell thickness
from 1 mm to 3 mm, the maximum value of the TL increases about 30%
and 120% for the cases of increasing and decreasing detuning param-
eter, respectively. Fig. 11(c) shows the eigenvalues of fixed points for
nonlinear model based on stability analysis Eq. (49). Considering this
figure, broader zone of detuning parameter corresponding to singular
points with positive real part eigenvalues shows more probability of
jump phenomena existence for shell vibration with less shell thickness.

The effects of incident sound amplitude, damping ratio and shell
thickness on frequency–response and transmission loss in the primary
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Fig. 5. Comparison of the numerical integration result with the MMS result for the frequency–response of the shell about the natural frequency of the linear system (𝜔1).
Fig. 6. Comparison of the numerical integration result with the MMS result for the Transmission Loss of the shell about the natural frequency of the linear system (𝜔1).
esonance case 𝛺 ≈ 𝜔3 are investigated and shown in Figs. 12–
4. According to these figures, the bending of the curves cannot be
een in this resonance case. Hence, the amplitude of vibration and
ransmission loss are not changed for increasing and decreasing the
etuning parameter about this frequency.

As shown in Fig. 9(b), in the primary resonance case 𝛺 ≈ 𝜔1 for
he case of increasing the detuning parameter, increasing the incident
ound level from 190 dB to 200 dB increases the TL from 18 to 24.
owever according to Fig. 12(b), incident sound level has no significant
ffect on the transmission loss curve of the cylindrical shell in the
rimary resonance case 𝛺 ≈ 𝜔3.

Figs. 13(a) and (b) show the effect of damping ratio on frequency–
esponse and TL in the primary resonance case 𝛺 ≈ 𝜔 where = 𝑐 .
3 (2𝜌𝜔3)

9

According to these figures, damping ratio has great effect on frequency–
response and TL curves in this resonance case. As shown in Fig. 13(b),
with increasing damping ratio from 0.001 to 0.01, the maximum value
of the TL increases about 20%.

The effect of shell thickness on frequency–response and transmission
loss of the cylindrical shell is investigated in Fig. 14(a) and (b), respec-
tively. Similar to case 𝛺 ≈ 𝜔1, with an increase in the shell thickness,
the transmission loss of the shell increases. According to Fig. 14(b),
with increasing the shell thickness from 1 mm to 3 mm, the TL increases
about 8%. Hence, the sensitivity of the TL to shell thickness for primary
resonance case 𝛺 ≈ 𝜔3 is less than resonance case 𝛺 ≈ 𝜔1 when the
detuning parameter increases.
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Fig. 7. The frequency–response of the shell about the natural frequency of the linear system (𝜔1).

Fig. 8. Transmission Loss of the shell about the natural frequency of the linear system (𝜔1).

10
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Fig. 9. The effect of the incident sound amplitude on the frequency–response under the primary resonance condition 𝛺 ≈ 𝜔1, (a) frequency–response curves, (b) transmission loss
curves, (c) stability eigen-values versus detuning parameter.
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Fig. 10. The effect of damping ratio on the frequency–response under the primary resonance condition 𝛺 ≈ 𝜔1, (a) frequency–response curves, (b) transmission loss curves, (c)
stability eigen-values versus detuning parameter.
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Fig. 11. The effect of the shell thickness on the frequency–response under the primary resonance condition 𝛺 ≈ 𝜔1, (a) frequency–response curves, (b) transmission loss curves,
(c) stability eigen-values versus detuning parameter.

13
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Fig. 12. The effect of the incident sound amplitude on the frequency–response under the primary resonance condition 𝛺 ≈ 𝜔3, (a) frequency–response curves, (b) transmission
loss curves.
5.2. Bifurcation analysis

The effects of detuning parameter 𝜖2𝜎1 on the steady-state behavior
of the system under primary resonance case (𝛺 ≈ 𝜔1) are examined
in Figs. 15–17. The simplest way to examine the bifurcation behavior
is to select some values of the detuning parameter. Three examples of
the steady-state vibration of the cylindrical shell have been calculated
based on Eqs. (41) and (29a) and are illustrated in Figs. 15–17. The
14
three examples chosen are 𝜖2𝜎1 = −700 shown in Fig. 15, 𝜖2𝜎1 = 0
shown in Fig. 16 and 𝜖2𝜎1 = 200 shown in Fig. 17. In each example,
the upper left-hand diagram presents the phase portrait of steady state
response of the system at the selected detuning parameter. Then in
the upper right-hand side and in the lower left-hand side, the corre-
sponding steady-state time series of deflection and velocity are shown
for each example, respectively. In addition, their Poincare sections are
illustrated in the lower right-hand side. As it can be observed, various
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Fig. 13. The effect of the damping coefficient on the frequency–response under the primary resonance condition 𝛺 ≈ 𝜔3, (a) frequency–response curves, (b) transmission loss
curves.
steady-state dynamic responses can take place over a relatively short
detuning parameter range due to the effect of the nonlinearity. In
addition, as detuning parameter is varied, some changes occur in the
shell steady-state dynamic behavior. These qualitative changes in the
shell dynamic behavior are so-called bifurcation phenomena, and the
detuning parameter is called a bifurcation parameter.

In Fig. 15, a bifurcation phenomenon of period-3 motion at 𝜖2𝜎1 =
−700 is investigated. Period-1 orbit at 𝜖2𝜎1 = 0 and its Poincare section,
displacement response, and velocity-time diagram are illustrated in
15
Fig. 16. Finally, Fig. 17 shows the Neimark–Sacker bifurcation behavior
of the shell oscillations at 𝜖2𝜎1 = 200 [29].

In Fig. 18, the bifurcation diagram of Poincare maps is presented for
variations in the detuning parameter. In this diagram, the results show
the value of the 𝐴11 parameter when its velocity is zero. As it can be
seen in this figure, different kinds of the shell dynamic behavior occur
by variation of the detuning parameter. It is also possible to observe
well-known bifurcations such as flip and Neimark–Sacker in this figure.
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Fig. 14. The effect of the shell thickness on the frequency–response under the primary resonance condition 𝛺 ≈ 𝜔3, (a) frequency–response curves, (b) transmission loss curves.
6. Conclusion

Vibro-acoustic behavior of cylindrical shell under primary reso-
nances was analytically studied in this paper. Donnell’s nonlinear shal-
low shell theory was used to derive the partial differential equations
16
of the shell radial motion. Then, the Galerkin method was employed
to achieve the coupled nonlinear ordinary differential equations of the
system. Also, in order to solve the nonlinear equations of system, Multi-
ple Scales method was used. Closed-form expressions were obtained for
the amplitude of vibration and transmission loss versus the frequency
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a
b

Fig. 15. Period-3 bifurcation: The steady-state dynamic behavior of the system including (a) the time series of displacement, (b) the time series of velocity, (c) the phase portrait,
(d) the Poincare section for 𝜖2𝜎1 = −700 under primary resonances condition.
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of the incident wave in different primary resonance conditions 𝛺 ≈ 𝜔1
nd 𝛺 ≈ 𝜔3. According to the obtained results, following remarks can
e made:

1- Unlike the primary resonance about 𝛺 ≈ 𝜔3, for the case of
primary resonance (𝛺 ≈ 𝜔1), jump phenomenon can be seen
in frequency–response of shell vibration and transmission loss
curve.

2- For the case of primary resonance (𝛺 ≈ 𝜔1), increasing the
amplitude of the incident wave increases the minimum value of
the transmission loss through the shell in the case of increasing
the detuning parameter. However, in the case of decreasing the
detuning parameter, the amplitude of the incident wave does
not affect the minimum transmission loss through the cylindrical
shell.

3- Incident sound level has no significant effect on the transmission
loss curve of the cylindrical shell in the primary resonance case
𝛺 ≈ 𝜔3.

4- With increasing the shell thickness from 1 mm to 3 mm, a
significant improvement could be observed in the value of TL
up to 120 percent about resonance frequency 𝛺 ≈ 𝜔3.

5- Increasing the damping ratio from 0.001 to 0.01 increases the
maximum value of the transmission loss up to 20% and 111%
around the resonance frequencies 𝜔1 and 𝜔3, respectively. There-
fore, using materials with more damping coefficient turned out
to improve acoustical behavior of the cylindrical shell around
these resonance frequencies.

6- Under primary resonance case 𝛺 ≈ 𝜔1, varying the detuning
parameter can change the limit cycle behavior of the steady-
state response of the cylindrical shell. It means that the detuning
parameter is a bifurcation parameter.
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ppendix A

Coefficients of Eq. (6):
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32𝜆1 𝑅2
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Fig. 16. Period-1 orbit: The steady-state dynamic behavior of the system including (a) the time series of displacement, (b) the time series of velocity, (c) the phase portrait, (d)
the Poincare section for 𝜖2𝜎1 = 0 under primary resonances condition.
𝑐7 (𝑡) =
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Appendix B

Coefficients of Eqs. (21) to (23)

𝑃1 =
𝐷
(

𝜆12 +
𝑛2

𝑅2

)2
− 𝜋𝐿

2 ℎ4
( ( ))
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w

𝐺

Fig. 17. Neimark–Sacker bifurcation: The steady-state dynamic behavior of the system including (a) the time series of displacement, (b) the time series of velocity, (c) the phase
portrait, (d) the Poincare section for 𝜖2𝜎1 = 200 under primary resonances condition.
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Fig. 18. Bifurcation diagram of Poincaré maps of the shell vibration with increasing detuning parameter.
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